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Algorithmic trading

Algorithmic trading has been prevalent (e.g., HFT)

- Algorithm-based hedge funds are responsible for about 27% of all equity
trading of any investor, according to the Tabb Group (WSJ, 2017)

- Algorithm-based hedge funds control more than 30% of all hedge-fund
assets, according to HFR Inc. (WSJ, 2017)

AI-powered trading

- Algorithmic trading + reinforcement-learning (RL) algorithms

- Has the potential to reshape capital markets fundamentally

- Presents new regulatory challenges
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Defining features of RL algorithms

- Self-learning

- Not just statistical machine learning, supervised or unsupervised

- Learning through autonomous trial-and-error experimentation

- Model-free learning

- No prior knowledge of the environment’s parameters or specifications

- Learning from the outcomes of their own actions

- Behavior-learning

- Not to learn the environment itself

- But rather to learn the optimal actions that maximize rewards
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RL algorithm is the backbone of “AlphaGo”

3 / 31



AI-powered trading has been on the rise

BarclayHedge poll (2018):

- 56% of hedge fund respondents said they were using artificial intelligence
or machine learning in their investment process

Yahoo Finance/Ipsos survey (2023):

- Younger adults are twice as likely to use an AI-powered financial advisor
compared to older adults

JPMorgan Chase survey (2023):

- More than 50% of respondents, which are 835 institutional and professional
traders, said AI technologies would have the most influence on trading the
next three years
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AI-powered trading as a regulatory priority

Regulatory challenges:

- Promote competitive and efficient markets amid rapid adoption of AI tech.

- Address the biases in RL algorithms due to factors like artificial stupidity
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“Psychology” of AI traders

AI algorithms do not merely imitate human behavior or intelligence
(e.g., Sargent, 2023)

- Existing theories are built on human behavior

- They are unsuitable to explain the dynamics of AI-powered capital markets

Understanding the implications of AI-powered trading necessitates

- Insights into the AI behavior, akin to the “psychology” of machines
(Goldstein Spatt Ye, 2021)

- But not the preferences or psychology of human beings
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Research questions

How would AI speculators trade under asymmetric information?

- Can they form collusion in the absence of communication?

- If so, what is the mechanism behind the “algo collusion?”

This paper:

- Informed AI speculators can collude and achieve supra-competitive profits

- Two distinct types of collusive behaviors
Info. asymmetry
low high

Mkt. efficiency
low Intelligence Stupidity

high Stupidity Stupidity

- “Intelligence”⇒ collusion via “price-trigger punishment”

- “Stupidity”⇒ collusion via biased learning + “hub-spoke conspiracy”
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Research design & approach

Simulation experiments based on a theoretical model

- Proof-of-concept illustration

- Similar to traditional theoretical studies

- Experimental study on the “psychology” of AI

- Similar to traditional experimental studies on human psychology

Experimental laboratory is built on Kyle (1985) + Vayanos Vila (2021)

- Multiple informed speculators + a representative preferred-habitat investor

- However, informed speculators are not rational-expectation agents

- Instead, each informed speculator is a Q-learning algorithm
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Outline

1. Theoretical benchmark

2. Simulation experiments

– Q-learning algorithms

– Experimental design

– Simulation results
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Four types of agents

(1) Risk-neutral informed speculators, indexed by i = 1, · · · , I

max
{xi,t}t≥0

E

[ ∞∑
t=0

ρt (vt − pt )xi,t

]
,

where vt ∼i.i.d. N(v , σ2
v ) is the fundamental value, and pt is the market price

(2) A representative preferred-habitat investor with demand curve:

zt = −ξ(pt − v), with ξ > 0

(3) A representative noise trader with order flows: ut ∼ N(0, σ2
u)

(4) A market maker who determines the market price pt .
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Timeline within each period t

- “Beginning”:

- The noise trader submits its order to buy ut quantity of the asset

- Informed speculator i observes vt , but not ut

- Informed speculator i submits order xi,t

- “End”:

- The market maker sets price pt

min
pt

E
[

(yt + zt )
2 + θ(pt − vt )

2
∣∣∣∣yt

]
, with yt =

I∑
i=1

xi,t + ut

knows the demand curve for zt , observes yt , but not single flows or vt

- Liquidation value vt is realized, so are trading profits for all agents

10 / 31



Timeline within each period t

- “Beginning”:

- The noise trader submits its order to buy ut quantity of the asset

- Informed speculator i observes vt , but not ut

- Informed speculator i submits order xi,t

- “End”:

- The market maker sets price pt

min
pt

E
[

(yt + zt )
2 + θ(pt − vt )

2
∣∣∣∣yt

]
, with yt =

I∑
i=1

xi,t + ut

knows the demand curve for zt , observes yt , but not single flows or vt

- Liquidation value vt is realized, so are trading profits for all agents

10 / 31



Market making

The FOC of the market maker’s optimal pricing problem is

pt = v +
ξ

ξ2 + θ
yt +

θ

ξ2 + θ
(E [vt |yt ]− v)

Economic interpretation:

- If ξ ≈ 0 or θ ≈ ∞, the market maker focuses on minimizing pricing errors:

pt = E [vt |yt ] ,

where efficient prices prevail, like in Kyle (1985)

- If ξ ≈ ∞ or θ ≈ 0, the market maker focuses on minimizing inventory costs:

pt = v + ξ−1yt ,

where prices are inefficient, like in Kyle Xiong (2001)
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Equilibria

Informed speculator i ’s order is

xi,t = χ(vt − v).

Different types of equilibrium:

- Non-collusive: each speculator sets its χ, taking others’ χ as given

- Perfect cartel: all I speculators submit orders jointly, like a monopoly

- Price-trigger collusive: speculators agree on some trading strategy, with
observations of abnormal prices get punished

If price-trigger collusive equilibrium exists, it must be

χM ≤ χC < χN
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Property #1 of collusion

Proposition (Impossibility of Collusion If Efficient Prices Prevail)
If prices are efficient, no collusive Nash equilibrium can be sustained by
price-trigger strategies.

Intuition:

- Sustaining collusion through price-trigger strategies requires 2 conditions:
i. Monitoring requires high price informativeness
ii. Informational rents require low price impact of informed trading flows

- If efficient prices prevail, these 2 conditions cannot simultaneously hold

e.g., In Kyle (1985), price informativeness is low and fixed.

In the model, price efficiency is high if θ is large or ξ is small
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Property #2 of collusion

Proposition (Existence of Collusion with Inefficient Prices)
If prices are inefficient, the collusive Nash equilibrium sustained by price-trigger
strategies exists for small σu/σv and I.

Intuition:

- Small information asymmetry facilitates monitoring

e.g., Abreu Milgrom Pearce (1991) and Sannikov Skrzypacz (2007)

In the model, price efficiency is low if θ is small or ξ is large
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Properties #3 of collusion

Proposition (Supra-competitive nature of collusion)
If a price-trigger collusive equilibrium exists, the average trading profits of
informed speculators satisfy:

πM ≥ πC > πN ,

Define ∆C ≡ πC − πN

πM − πN , inequalities above imply

∆C ∈ (0,1].

15 / 31



Property #4 and #5 of collusion

Proposition (Price informativeness of collusion)
If a price-trigger collusive equilibrium exists, the price informativeness measures
(i.e., logged signal-noise ratios of prices) satisfy:

IM ≤ IC < IN .

Proposition (Determinants of collusion capacity)
If a price-trigger collusive equilibrium exists, the collusion capacity and price
informativeness satisfies the following properties:

(i) ξ ↑ =⇒ ∆C ↑ & IC ↓

(ii) σu/σv ↑ =⇒ ∆C ↓ & IC ↑

(iii) I ↑ =⇒ ∆C ↓ & IC ↑

(iv) ρ ↑ =⇒ ∆C ↑ & IC ↓
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Outline

1. Theoretical benchmark

2. Simulation experiments

– Q-learning algorithms

– Experimental design

– Simulation results
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From Bellman equation to Q-function

Consider the intertemporal optimization problem:

max
{xi,t}t≥0

E

[ ∞∑
t=0

ρt (vt − pt )xi,t

]
,

The rational-expectations agent uses the Bellman equation:

Vi (s) = max
x∈X
{E [(v − p)x |s, x ] + ρE [Vi (s′)|s, x ]} ,

The Q-function, Qi (s, x), captures scenarios even off the equilibrium path:

Qi (s, x) = E [(v − p)x |s, x ] + ρE [Vi (s′)|s, x ] .

A recursive relation of Q-function Qi (s, x):

Qi (s, x) = E [(v − p)x |s, x ] + ρE
[

max
x′∈X

Qi (s′, x ′)
∣∣∣∣s, x] .
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Q-learning algorithms

Challenges:

(1) Unknown conditional distribution E[·|s, x ]

(2) Unknown Q values at the off-equilibrium pairs (s, x)

The Q-learning program:

Q̂i,t+1(st , xi,t ) = (1− α) Q̂i,t (st , xi,t )︸ ︷︷ ︸
Past knowledge

+ α

[
(vt − pt )xi,t + ρmax

x∈X
Q̂i,t (st+1, x)

]
,︸ ︷︷ ︸

Present learning based on a new experiment

where α governs the “forgetting” rate.
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Exploitation-exploration tradeoff

The action xi,t is chosen as follows:

xi,t =

 argmaxx∈X Q̂i,t (st , x), with prob. 1− εt , (exploitation)

x̃ ∼ uniform distribution on X, with prob. εt . (exploration)

where εt = e−βt .

- Exploitation: A greedy approach to exploit what has already been learned

- Exploration: Improve knowledge about each possible action

Exploration generates “off-equilibrium” deviation experimentation

- Crucial for machines to form a collusion
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Adaptive market maker

- The market maker does not know the distributions of randomness

- It analyzes historical data on {vt−τ ,pt−τ , zt−τ , yt−τ}Tm
τ=1 and estimates:

zt−τ = ξ0 − ξ1pt−τ ,

vt−τ = γ0 + γ1yt−τ + εt−τ , with τ = 1, · · · ,Tm.

- The adaptive pricing rule is

pt (y) = γ̂0,t +
θγ̂1,t + ξ̂1,t

θ + ξ̂2
1,t

y ,

- Note: Results will not change with a Q-learning market maker
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Outline

1. Theoretical benchmark

2. Simulation experiments

– Q-learning algorithms

– Experimental design

– Simulation results
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State variables and parameter values

State variables: The minimalist set st = {pt−1, vt}

Environment parameters:

I = 2, v = 1, σv = 1, σu = 0.1, and ξ = 500

Important: Agents do not know any environment parameters

Preference parameters: ρ = 0.95, and θ = 0.1

Simulation parameters: nx = 15, np = 31, nv = 10, and Tm = 10,000

Hyperparameters: α = 0.01 and β = 10−5
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Convergence

Convergence criterion:

- Each speculator’s optimal strategy does not change for 1,000,000
consecutive periods

- All N = 1,000 simulation sessions are simulated until convergence

Computation power:

- Implemented in C++

- 9 high-powered-computing servers, with 376 CPU cores
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Outline

1. Theoretical benchmark

2. Simulation experiments

– Q-learning algorithms

– Experimental design

– Simulation results
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Price-trigger strategy (σu/σv = 0.1 and ξ = 500)

∆C = 0.73 and πC/πN = 1.09.
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Punishment for deviation (σu/σv = 0.1 and ξ = 500)

∆C = 0.73 and πC/πN = 1.09.
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Distributions of IRFs
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Biased learning (σu/σv = 100 and ξ = 500)

∆C = 0.6 and πC/πN = 1.075.
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Collusion through artificial intelligence or stupidity
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Properties #1, #2, #5(i) and #5(ii)
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Properties #5(iii)
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Properties #5(iv)
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Conclusion

- This paper studies the “psychology” of informed AI speculators

- Algorithmic collusion emerges in the absence of communication

- How does the AI era of financial world look like?

- Machines are often viewed as superior to humans:

- Unconscious biases in human decision-making

- Information-processing limitations of human brains

- However, AI can hurt market efficiency and price informativeness

- No matter information asymmetry is low or high

- Due to “intelligence” or “stupidity”

31 / 31



Conclusion

- This paper studies the “psychology” of informed AI speculators

- Algorithmic collusion emerges in the absence of communication

- How does the AI era of financial world look like?

- Machines are often viewed as superior to humans:

- Unconscious biases in human decision-making

- Information-processing limitations of human brains

- However, AI can hurt market efficiency and price informativeness

- No matter information asymmetry is low or high

- Due to “intelligence” or “stupidity”

31 / 31



Conclusion

- This paper studies the “psychology” of informed AI speculators

- Algorithmic collusion emerges in the absence of communication

- How does the AI era of financial world look like?

- Machines are often viewed as superior to humans:

- Unconscious biases in human decision-making

- Information-processing limitations of human brains

- However, AI can hurt market efficiency and price informativeness

- No matter information asymmetry is low or high

- Due to “intelligence” or “stupidity”

31 / 31



Conclusion

- This paper studies the “psychology” of informed AI speculators

- Algorithmic collusion emerges in the absence of communication

- How does the AI era of financial world look like?

- Machines are often viewed as superior to humans:

- Unconscious biases in human decision-making

- Information-processing limitations of human brains

- However, AI can hurt market efficiency and price informativeness

- No matter information asymmetry is low or high

- Due to “intelligence” or “stupidity”

31 / 31



Literature

AI-powered pricing strategies in product markets

- Calvano Calzolari Denicolò Pastorello (2020), Assad Clark Ershov Xu
(2021), Asker Fershtman Pakes (2022), Brown MacKay (2023)

- Findings: Diminish the competitiveness and even lead to collusive behavior

- Difference: No information asymmetry, exogenous and fixed demand curve

AI-powered trading strategies in financial markets

- Colliard Foucault Lovo (2022)

- Findings: Diminish the competitiveness and compromise price efficiency

- Difference: AI market makers, naive non-adaptive informed investors
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We focus on Q-learning algorithm. Why?

- A foundational framework for numerous RL algorithms

- Popularity among scientists and wall street practitioners

- Simplicity and transparency, with clear economic interpretations
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Price-trigger strategy (σu/σv = 0.1 and ξ = 500)
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Properties #5(iii)
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Property #4
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Properties #5(iv)
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Hyperparameters α and β

α ↓ = more advanced AI algo that requires higher computational power
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How to sustain collusion through biased learning?

- More advanced AI algo wins, while less advanced AI algo loses

- “Hub-spoke conspiracy:” Speculators adopt the same AI algo from the
same technology supplier (e.g., Johnson Sokol, 2023)
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Policy implications

To improve market efficiency and price informativeness.

- Provide market makers with more incentives and capacities for pricing error
minimization

- Avoid concentration of information technologies (i.e., make sure I is
sufficiently large)

- Avoid concentration among the suppliers of the AI technologies
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