Al-Powered Trading, Algorithmic Collusion, and Price Efficiency

Winston W. Dou^o Itay Goldstein^o Yan Ji[†]

°University of Pennsylvania and NBER †Hong Kong University of Science and Technology

Nordic Fintech Symposium 2023, Sep 26

Algorithmic trading has been prevalent (e.g., HFT)

- Algorithm-based hedge funds are responsible for about 27% of all equity trading of any investor, according to the Tabb Group (WSJ, 2017)
- Algorithm-based hedge funds control more than 30% of all hedge-fund assets, according to HFR Inc. (WSJ, 2017)

Al-powered trading

- Algorithmic trading + reinforcement-learning (RL) algorithms
 - Has the potential to reshape capital markets fundamentally
 - Presents new regulatory challenges

Algorithmic trading has been prevalent (e.g., HFT)

- Algorithm-based hedge funds are responsible for about 27% of all equity trading of any investor, according to the Tabb Group (WSJ, 2017)
- Algorithm-based hedge funds control more than 30% of all hedge-fund assets, according to HFR Inc. (WSJ, 2017)

Al-powered trading

- Algorithmic trading + reinforcement-learning (RL) algorithms
 - Has the potential to reshape capital markets fundamentally
 - Presents new regulatory challenges

Algorithmic trading has been prevalent (e.g., HFT)

- Algorithm-based hedge funds are responsible for about 27% of all equity trading of any investor, according to the Tabb Group (WSJ, 2017)
- Algorithm-based hedge funds control more than 30% of all hedge-fund assets, according to HFR Inc. (WSJ, 2017)

Al-powered trading

- Algorithmic trading + reinforcement-learning (RL) algorithms
 - Has the potential to reshape capital markets fundamentally
 - Presents new regulatory challenges

Defining features of RL algorithms

- Self-learning
 - Not just statistical machine learning, supervised or unsupervised
 - Learning through autonomous trial-and-error experimentation
- Model-free learning
 - No prior knowledge of the environment's parameters or specifications
 - Learning from the outcomes of their own actions
- Behavior-learning
 - Not to learn the environment itself
 - But rather to learn the optimal actions that maximize rewards

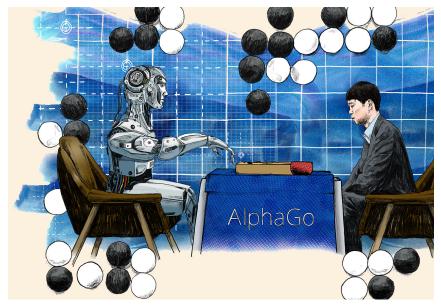
Defining features of RL algorithms

- Self-learning
 - Not just statistical machine learning, supervised or unsupervised
 - Learning through autonomous trial-and-error experimentation
- Model-free learning
 - No prior knowledge of the environment's parameters or specifications
 - Learning from the outcomes of their own actions
- Behavior-learning
 - Not to learn the environment itself
 - But rather to learn the optimal actions that maximize rewards

Defining features of RL algorithms

- Self-learning
 - Not just statistical machine learning, supervised or unsupervised
 - Learning through autonomous trial-and-error experimentation
- Model-free learning
 - No prior knowledge of the environment's parameters or specifications
 - Learning from the outcomes of their own actions
- Behavior-learning
 - Not to learn the environment itself
 - But rather to learn the optimal actions that maximize rewards

RL algorithm is the backbone of "AlphaGo"



BarclayHedge poll (2018):

- 56% of hedge fund respondents said they were using artificial intelligence or machine learning in their investment process

Yahoo Finance/Ipsos survey (2023):

- Younger adults are twice as likely to use an AI-powered financial advisor compared to older adults

JPMorgan Chase survey (2023):

 More than 50% of respondents, which are 835 institutional and professional traders, said AI technologies would have the most influence on trading the next three years

SEC Chair, Gary Gensler, has warned of

Financial market instability if big tech-based trading companies monopolize AI development and applications within the financial sector

Regulatory challenges:

- Promote competitive and efficient markets amid rapid adoption of AI tech.
- Address the biases in RL algorithms due to factors like artificial stupidity

SEC Chair, Gary Gensler, has warned of

Financial market instability if big tech-based trading companies monopolize AI development and applications within the financial sector

Regulatory challenges:

- Promote competitive and efficient markets amid rapid adoption of AI tech.
- Address the biases in RL algorithms due to factors like artificial stupidity

Al algorithms do not merely imitate human behavior or intelligence (e.g., Sargent, 2023)

- Existing theories are built on human behavior
- They are unsuitable to explain the dynamics of AI-powered capital markets

Understanding the implications of Al-powered trading necessitates

- Insights into the AI behavior, akin to the "**psychology**" of machines (Goldstein_Spatt_Ye, 2021)
- But not the preferences or psychology of human beings

Al algorithms do not merely imitate human behavior or intelligence (e.g., Sargent, 2023)

- Existing theories are built on human behavior
- They are unsuitable to explain the dynamics of AI-powered capital markets

Understanding the implications of AI-powered trading necessitates

- Insights into the Al behavior, akin to the "psychology" of machines (Goldstein_Spatt_Ye, 2021)
- But not the preferences or psychology of human beings

How would AI speculators trade under asymmetric information?

- Can they form collusion in the absence of communication?
- If so, what is the mechanism behind the "algo collusion?"

- Informed AI speculators can collude and achieve supra-competitive profits
- Two distinct types of collusive behaviors

- "Intelligence" \Rightarrow collusion via "price-trigger punishment"
- "Stupidity" \Rightarrow collusion via biased learning + "hub-spoke conspiracy"

Research questions

How would AI speculators trade under asymmetric information?

- Can they form collusion in the absence of communication?
- If so, what is the mechanism behind the "algo collusion?"

- Informed AI speculators can collude and achieve supra-competitive profits
- Two distinct types of collusive behaviors

- "Intelligence" \Rightarrow collusion via "price-trigger punishment"
- "Stupidity" \Rightarrow collusion via biased learning + "hub-spoke conspiracy"

Research questions

How would AI speculators trade under asymmetric information?

- Can they form collusion in the absence of communication?
- If so, what is the mechanism behind the "algo collusion?"

- Informed AI speculators can collude and achieve supra-competitive profits
- Two distinct types of collusive behaviors

- "Intelligence" \Rightarrow collusion via "price-trigger punishment"
- "Stupidity" \Rightarrow collusion via biased learning + "hub-spoke conspiracy"

Research questions

How would AI speculators trade under asymmetric information?

- Can they form collusion in the absence of communication?
- If so, what is the mechanism behind the "algo collusion?"

- Informed AI speculators can collude and achieve supra-competitive profits
- Two distinct types of collusive behaviors

		Info. asymmetry	
		low	high
Mkt. efficiency	low	Intelligence	Stupidity
	high	Stupidity	Stupidity

- "Intelligence" \Rightarrow collusion via "price-trigger punishment"
- "Stupidity" \Rightarrow collusion via biased learning + "hub-spoke conspiracy"

Research design & approach

Simulation experiments based on a theoretical model

- Proof-of-concept illustration
 - Similar to traditional theoretical studies
- Experimental study on the "psychology" of AI
 - Similar to traditional experimental studies on human psychology

Experimental laboratory is built on Kyle (1985) + Vayanos_Vila (2021)

- Multiple informed speculators + a representative preferred-habitat investor
- However, informed speculators are not rational-expectation agents
- Instead, each informed speculator is a Q-learning algorithm

Research design & approach

Simulation experiments based on a theoretical model

- Proof-of-concept illustration
 - Similar to traditional theoretical studies
- Experimental study on the "psychology" of AI
 - Similar to traditional experimental studies on human psychology

Experimental laboratory is built on Kyle (1985) + Vayanos_Vila (2021)

- Multiple informed speculators + a representative preferred-habitat investor
- However, informed speculators are not rational-expectation agents
- Instead, each informed speculator is a Q-learning algorithm

Outline

- 1. Theoretical benchmark
- 2. Simulation experiments

- Q-learning algorithms

- Experimental design

Simulation results

(1) Risk-neutral informed speculators, indexed by $i = 1, \dots, I$

$$\max_{\{x_{i,t}\}_{t\geq 0}} \mathbb{E}\left[\sum_{t=0}^{\infty} \rho^t (v_t - p_t) x_{i,t}\right],$$

where $v_t \sim^{i.i.d.} N(\overline{v}, \sigma_v^2)$ is the fundamental value, and p_t is the market price

2) A representative preferred-habitat investor with demand curve:

$$z_t = -\xi(p_t - \overline{v}), \text{ with } \xi > 0$$

(3) A representative noise trader with order flows: $u_t \sim N(0, \sigma_u^2)$

(1) Risk-neutral informed speculators, indexed by $i = 1, \dots, I$

$$\max_{\{x_{i,t}\}_{t\geq 0}} \mathbb{E}\left[\sum_{t=0}^{\infty} \rho^t (v_t - p_t) x_{i,t}\right],$$

where $v_t \sim^{i.i.d.} N(\overline{v}, \sigma_v^2)$ is the fundamental value, and p_t is the market price

(2) A representative preferred-habitat investor with demand curve:

$$z_t = -\xi(p_t - \overline{v}), \text{ with } \xi > 0$$

(3) A representative noise trader with order flows: $u_t \sim N(0, \sigma_u^2)$

(1) Risk-neutral informed speculators, indexed by $i = 1, \dots, I$

$$\max_{\{x_{i,t}\}_{t\geq 0}} \mathbb{E}\left[\sum_{t=0}^{\infty} \rho^{t} (\mathbf{v}_{t} - \mathbf{p}_{t}) \mathbf{x}_{i,t}\right],$$

where $v_t \sim^{i.i.d.} N(\overline{v}, \sigma_v^2)$ is the fundamental value, and p_t is the market price

(2) A representative preferred-habitat investor with demand curve:

$$z_t = -\xi(p_t - \overline{v}), \text{ with } \xi > 0$$

(3) A representative noise trader with order flows: $u_t \sim N(0, \sigma_u^2)$

(1) Risk-neutral informed speculators, indexed by $i = 1, \dots, I$

$$\max_{\{x_{i,t}\}_{t\geq 0}} \mathbb{E}\left[\sum_{t=0}^{\infty} \rho^t (v_t - p_t) x_{i,t}\right],$$

where $v_t \sim^{i.i.d.} N(\overline{v}, \sigma_v^2)$ is the fundamental value, and p_t is the market price

(2) A representative preferred-habitat investor with demand curve:

$$z_t = -\xi(p_t - \overline{v}), \text{ with } \xi > 0$$

(3) A representative noise trader with order flows: $u_t \sim N(0, \sigma_u^2)$

Timeline within each period *t*

- "Beginning":
 - The noise trader submits its order to buy *u*_t quantity of the asset
 - Informed speculator *i* observes *v*_t, but not *u*_t
 - Informed speculator *i* submits order *x*_{*i*,*t*}
- "End":
 - The market maker sets price pt

$$\min_{p_t} \mathbb{E}\left[(y_t + z_t)^2 + \theta (p_t - v_t)^2 \middle| y_t \right], \text{ with } y_t = \sum_{i=1}^l x_{i,t} + u_t$$

knows the demand curve for z_t , observes y_t , but not single flows or v_t

- Liquidation value vt is realized, so are trading profits for all agents

Timeline within each period *t*

- "Beginning":
 - The noise trader submits its order to buy *u*_t quantity of the asset
 - Informed speculator *i* observes *v*_t, but not *u*_t
 - Informed speculator *i* submits order *x*_{*i*,*t*}
- "End":
 - The market maker sets price p_t

$$\min_{p_t} \mathbb{E}\left[(y_t + z_t)^2 + \theta (p_t - v_t)^2 \middle| y_t \right], \text{ with } y_t = \sum_{i=1}^l x_{i,t} + u_t$$

knows the demand curve for z_t , observes y_t , but not single flows or v_t

- Liquidation value v_t is realized, so are trading profits for all agents

Market making

The FOC of the market maker's optimal pricing problem is

$$p_t = \overline{v} + \frac{\xi}{\xi^2 + \theta} y_t + \frac{\theta}{\xi^2 + \theta} \left(\mathbb{E} \left[v_t | y_t \right] - \overline{v} \right)$$

Economic interpretation:

- If $\xi \approx 0$ or $\theta \approx \infty$, the market maker focuses on minimizing pricing errors:

$$p_t = \mathbb{E}\left[v_t | y_t\right],$$

where efficient prices prevail, like in Kyle (1985)

- If $\xi \approx \infty$ or $\theta \approx 0$, the market maker focuses on minimizing inventory costs:

$$p_t = \overline{v} + \xi^{-1} y_t,$$

where prices are inefficient, like in Kyle_Xiong (2001)

Market making

The FOC of the market maker's optimal pricing problem is

$$\boldsymbol{\rho}_{t} = \overline{\boldsymbol{v}} + \frac{\xi}{\xi^{2} + \theta} \boldsymbol{y}_{t} + \frac{\theta}{\xi^{2} + \theta} \left(\mathbb{E} \left[\boldsymbol{v}_{t} | \boldsymbol{y}_{t} \right] - \overline{\boldsymbol{v}} \right)$$

Economic interpretation:

- If $\xi \approx 0$ or $\theta \approx \infty$, the market maker focuses on minimizing pricing errors:

$$\boldsymbol{\rho}_t = \mathbb{E}\left[\boldsymbol{v}_t | \boldsymbol{y}_t\right],$$

where efficient prices prevail, like in Kyle (1985)

- If $\xi \approx \infty$ or $\theta \approx 0$, the market maker focuses on minimizing inventory costs:

$$p_t = \overline{v} + \xi^{-1} y_t,$$

where prices are inefficient, like in Kyle_Xiong (2001)

Market making

The FOC of the market maker's optimal pricing problem is

$$\boldsymbol{\rho}_{t} = \overline{\boldsymbol{v}} + \frac{\xi}{\xi^{2} + \theta} \boldsymbol{y}_{t} + \frac{\theta}{\xi^{2} + \theta} \left(\mathbb{E} \left[\boldsymbol{v}_{t} | \boldsymbol{y}_{t} \right] - \overline{\boldsymbol{v}} \right)$$

Economic interpretation:

- If $\xi \approx 0$ or $\theta \approx \infty$, the market maker focuses on minimizing pricing errors:

$$\boldsymbol{\rho}_t = \mathbb{E}\left[\boldsymbol{v}_t | \boldsymbol{y}_t\right],$$

where efficient prices prevail, like in Kyle (1985)

- If $\xi \approx \infty$ or $\theta \approx 0$, the market maker focuses on minimizing inventory costs:

$$p_t = \overline{v} + \xi^{-1} y_t,$$

where prices are inefficient, like in Kyle_Xiong (2001)

Informed speculator i's order is

$$\mathbf{x}_{i,t} = \chi(\mathbf{v}_t - \overline{\mathbf{v}}).$$

Different types of equilibrium:

- Non-collusive: each speculator sets its χ , taking others' χ as given
- Perfect cartel: all / speculators submit orders jointly, like a monopoly
- Price-trigger collusive: speculators agree on some trading strategy, with observations of abnormal prices get punished

$$\chi^M \le \chi^C < \chi^N$$

Informed speculator i's order is

$$\mathbf{x}_{i,t} = \chi(\mathbf{v}_t - \overline{\mathbf{v}}).$$

Different types of equilibrium:

- Non-collusive: each speculator sets its χ , taking others' χ as given
- Perfect cartel: all / speculators submit orders jointly, like a monopoly
- Price-trigger collusive: speculators agree on some trading strategy, with observations of abnormal prices get punished

$$\chi^M \le \chi^C < \chi^N$$

Informed speculator i's order is

$$\mathbf{x}_{i,t} = \chi(\mathbf{v}_t - \overline{\mathbf{v}}).$$

Different types of equilibrium:

- Non-collusive: each speculator sets its χ , taking others' χ as given
- Perfect cartel: all / speculators submit orders jointly, like a monopoly
- Price-trigger collusive: speculators agree on some trading strategy, with observations of abnormal prices get punished

$$\chi^M \le \chi^C < \chi^N$$

Informed speculator i's order is

$$\mathbf{x}_{i,t} = \chi(\mathbf{v}_t - \overline{\mathbf{v}}).$$

Different types of equilibrium:

- Non-collusive: each speculator sets its χ , taking others' χ as given
- Perfect cartel: all I speculators submit orders jointly, like a monopoly
- Price-trigger collusive: speculators agree on some trading strategy, with observations of abnormal prices get punished

$$\chi^M \le \chi^C < \chi^N$$

Informed speculator i's order is

$$\mathbf{x}_{i,t} = \chi(\mathbf{v}_t - \overline{\mathbf{v}}).$$

Different types of equilibrium:

- Non-collusive: each speculator sets its χ , taking others' χ as given
- Perfect cartel: all I speculators submit orders jointly, like a monopoly
- Price-trigger collusive: speculators agree on some trading strategy, with observations of abnormal prices get punished

$$\chi^{\textit{M}} \leq \chi^{\textit{C}} < \chi^{\textit{N}}$$

Proposition (Impossibility of Collusion If Efficient Prices Prevail) If prices are efficient, no collusive Nash equilibrium can be sustained by price-trigger strategies.

Intuition:

- Sustaining collusion through price-trigger strategies requires 2 conditions:
 - i. Monitoring requires high price informativeness
 - ii. Informational rents require low price impact of informed trading flows
- If efficient prices prevail, these 2 conditions cannot simultaneously hold e.g., In Kyle (1985), price informativeness is low and fixed.

In the model, price efficiency is high if θ is large or ξ is small

Proposition (Impossibility of Collusion If Efficient Prices Prevail)

If prices are efficient, no collusive Nash equilibrium can be sustained by price-trigger strategies.

Intuition:

- Sustaining collusion through price-trigger strategies requires 2 conditions:
 - i. Monitoring requires high price informativeness
 - ii. Informational rents require low price impact of informed trading flows
- If efficient prices prevail, these 2 conditions cannot simultaneously hold e.g., In Kyle (1985), price informativeness is low and fixed.

In the model, price efficiency is high if θ is large or ξ is small

Proposition (Impossibility of Collusion If Efficient Prices Prevail)

If prices are efficient, no collusive Nash equilibrium can be sustained by price-trigger strategies.

Intuition:

- Sustaining collusion through price-trigger strategies requires 2 conditions:
 - i. Monitoring requires high price informativeness
 - ii. Informational rents require low price impact of informed trading flows
- If efficient prices prevail, these 2 conditions cannot simultaneously hold e.g., In Kyle (1985), price informativeness is low and fixed.

In the model, price efficiency is high if θ is large or ξ is small

Proposition (Impossibility of Collusion If Efficient Prices Prevail)

If prices are efficient, no collusive Nash equilibrium can be sustained by price-trigger strategies.

Intuition:

- Sustaining collusion through price-trigger strategies requires 2 conditions:
 - i. Monitoring requires high price informativeness
 - ii. Informational rents require low price impact of informed trading flows
- If efficient prices prevail, these 2 conditions cannot simultaneously hold e.g., In Kyle (1985), price informativeness is low and fixed.

In the model, price efficiency is high if θ is large or ξ is small

Proposition (Existence of Collusion with Inefficient Prices)

If prices are inefficient, the collusive Nash equilibrium sustained by price-trigger strategies exists for small σ_u/σ_v and I.

Intuition:

- Small information asymmetry facilitates monitoring
 - e.g., Abreu_Milgrom_Pearce (1991) and Sannikov_Skrzypacz (2007)

In the model, price efficiency is low if θ is small or ξ is large

Proposition (Existence of Collusion with Inefficient Prices)

If prices are inefficient, the collusive Nash equilibrium sustained by price-trigger strategies exists for small σ_u/σ_v and I.

Intuition:

- Small information asymmetry facilitates monitoring
 - e.g., Abreu_Milgrom_Pearce (1991) and Sannikov_Skrzypacz (2007)

In the model, price efficiency is low if θ is small or ξ is large

Proposition (Existence of Collusion with Inefficient Prices)

If prices are inefficient, the collusive Nash equilibrium sustained by price-trigger strategies exists for small σ_u/σ_v and I.

Intuition:

- Small information asymmetry facilitates monitoring
 - e.g., Abreu_Milgrom_Pearce (1991) and Sannikov_Skrzypacz (2007)

In the model, price efficiency is low if θ is small or ξ is large

Proposition (Supra-competitive nature of collusion)

If a price-trigger collusive equilibrium exists, the average trading profits of informed speculators satisfy:

$$\pi^{\boldsymbol{M}} \ge \pi^{\boldsymbol{C}} > \pi^{\boldsymbol{N}},$$

Define $\Delta^{C} \equiv \frac{\pi^{C} - \pi^{N}}{\pi^{M} - \pi^{N}}$, inequalities above imply

 $\Delta^{\textit{C}} \in (0,1].$

Property #4 and #5 of collusion

Proposition (Price informativeness of collusion)

If a price-trigger collusive equilibrium exists, the price informativeness measures (i.e., logged signal-noise ratios of prices) satisfy:

$$\mathcal{I}^M \leq \mathcal{I}^C < \mathcal{I}^N.$$

Proposition (Determinants of collusion capacity)

If a price-trigger collusive equilibrium exists, the collusion capacity and price informativeness satisfies the following properties:

(i)
$$\xi \uparrow \Longrightarrow \Delta^C \uparrow \quad \& \quad \mathcal{I}^C \downarrow$$

(ii) $\sigma_u/\sigma_v \uparrow \implies \Delta^C \downarrow \& \mathcal{I}^C \uparrow$

 $(iii) I \uparrow \implies \Delta^C \downarrow \& \mathcal{I}^C \uparrow$

(iv) $\rho \uparrow \Longrightarrow \Delta^C \uparrow \& \mathcal{I}^C \downarrow$

Property #4 and #5 of collusion

Proposition (Price informativeness of collusion)

If a price-trigger collusive equilibrium exists, the price informativeness measures (i.e., logged signal-noise ratios of prices) satisfy:

$$\mathcal{I}^M \leq \mathcal{I}^C < \mathcal{I}^N.$$

Proposition (Determinants of collusion capacity)

If a price-trigger collusive equilibrium exists, the collusion capacity and price informativeness satisfies the following properties:

(i)
$$\xi \uparrow \Longrightarrow \Delta^{C} \uparrow \& \mathcal{I}^{C} \downarrow$$

(ii) $\sigma_{u}/\sigma_{v} \uparrow \Longrightarrow \Delta^{C} \downarrow \& \mathcal{I}^{C}$
(iii) $I \uparrow \Longrightarrow \Delta^{C} \downarrow \& \mathcal{I}^{C} \uparrow$
(iv) $\rho \uparrow \Longrightarrow \Delta^{C} \uparrow \& \mathcal{I}^{C} \downarrow$

Outline

- 1. Theoretical benchmark
- 2. Simulation experiments

- Q-learning algorithms

- Experimental design

Simulation results

Consider the intertemporal optimization problem:

$$\max_{\{\boldsymbol{x}_{i,t}\}_{t\geq 0}} \mathbb{E}\left[\sum_{t=0}^{\infty} \rho^{t} (\boldsymbol{v}_{t} - \boldsymbol{p}_{t}) \boldsymbol{x}_{i,t}\right],$$

The rational-expectations agent uses the Bellman equation:

$$V_i(s) = \max_{x \in \mathcal{X}} \left\{ \mathbb{E} \left[(v - p) x | s, x \right] + \rho \mathbb{E} \left[V_i(s') | s, x \right] \right\},\$$

The Q-function, $Q_i(s, x)$, captures scenarios even off the equilibrium path:

$$Q_i(s,x) = \mathbb{E}\left[(v-p)x|s,x\right] + \rho \mathbb{E}\left[V_i(s')|s,x\right]$$

$$Q_i(s, x) = \mathbb{E}\left[(v - p)x|s, x\right] + \rho \mathbb{E}\left[\max_{x' \in \mathfrak{X}} Q_i(s', x') \middle| s, x
ight].$$

Consider the intertemporal optimization problem:

$$\max_{\{x_{i,t}\}_{t\geq 0}} \mathbb{E}\left[\sum_{t=0}^{\infty} \rho^t (\mathbf{v}_t - \mathbf{p}_t) \mathbf{x}_{i,t}\right],$$

The rational-expectations agent uses the Bellman equation:

$$V_i(s) = \max_{x \in \mathcal{X}} \left\{ \mathbb{E} \left[(v - p) x | s, x \right] + \rho \mathbb{E} \left[V_i(s') | s, x \right] \right\},\$$

The Q-function, $Q_i(s, x)$, captures scenarios even off the equilibrium path:

$$Q_i(s,x) = \mathbb{E}\left[(v-p)x|s,x\right] + \rho \mathbb{E}\left[V_i(s')|s,x\right]$$

$$Q_i(s,x) = \mathbb{E}\left[(v-p)x|s,x\right] + \rho \mathbb{E}\left[\max_{x' \in \mathfrak{X}} Q_i(s',x') \middle| s,x
ight].$$

Consider the intertemporal optimization problem:

$$\max_{\{\mathbf{X}_{i,t}\}_{t\geq 0}} \mathbb{E}\left[\sum_{t=0}^{\infty} \rho^t (\mathbf{v}_t - \mathbf{p}_t) \mathbf{x}_{i,t}\right],$$

The rational-expectations agent uses the Bellman equation:

$$V_i(s) = \max_{x \in \mathcal{X}} \left\{ \mathbb{E} \left[(v - p) x | s, x \right] + \rho \mathbb{E} \left[V_i(s') | s, x \right] \right\},\$$

The Q-function, $Q_i(s, x)$, captures scenarios even off the equilibrium path:

$$Q_i(s,x) = \mathbb{E}\left[(v-\rho)x|s,x\right] + \rho \mathbb{E}\left[V_i(s')|s,x\right].$$

$$\mathcal{Q}_i(s,x) = \mathbb{E}\left[(v-p)x|s,x
ight] +
ho \mathbb{E}\left[\max_{x'\in\mathfrak{X}}\mathcal{Q}_i(s',x')\Big|s,x
ight].$$

Consider the intertemporal optimization problem:

$$\max_{\{x_{i,t}\}_{t\geq 0}} \mathbb{E}\left[\sum_{t=0}^{\infty} \rho^t (\mathbf{v}_t - \mathbf{p}_t) \mathbf{x}_{i,t}\right],$$

The rational-expectations agent uses the Bellman equation:

$$V_i(s) = \max_{x \in \mathcal{X}} \left\{ \mathbb{E} \left[(v - p) x | s, x \right] + \rho \mathbb{E} \left[V_i(s') | s, x \right] \right\},\$$

The Q-function, $Q_i(s, x)$, captures scenarios even off the equilibrium path:

$$Q_i(s,x) = \mathbb{E}\left[(v-p)x|s,x\right] + \rho \mathbb{E}\left[V_i(s')|s,x\right].$$

$$oldsymbol{Q}_i(oldsymbol{s},oldsymbol{x}) = \mathbb{E}\left[(oldsymbol{v}-oldsymbol{
ho})oldsymbol{x}|oldsymbol{s},oldsymbol{x}
ight] +
ho\mathbb{E}\left[\max_{oldsymbol{x}'\in\mathfrak{X}}oldsymbol{Q}_i(oldsymbol{s}',oldsymbol{x}')igg|oldsymbol{s},oldsymbol{x}
ight].$$

Challenges:

- (1) Unknown conditional distribution $\mathbb{E}[\cdot|s, x]$
- (2) Unknown Q values at the off-equilibrium pairs (s, x)

The Q-learning program:

$$\widehat{Q}_{i,t+1}(s_t, x_{i,t}) = (1 - \alpha) \underbrace{\widehat{Q}_{i,t}(s_t, x_{i,t})}_{\text{Past knowledge}} + \alpha \underbrace{\left[(v_t - p_t) x_{i,t} + \rho \max_{x \in \mathcal{X}} \widehat{Q}_{i,t}(s_{t+1}, x) \right]}_{\text{Past knowledge}},$$

Present learning based on a new experiment

where α governs the "forgetting" rate.

Challenges:

- (1) Unknown conditional distribution $\mathbb{E}[\cdot|s, x]$
- (2) Unknown Q values at the off-equilibrium pairs (s, x)

The Q-learning program:

$$\widehat{Q}_{i,t+1}(s_t, x_{i,t}) = (1 - \alpha) \underbrace{\widehat{Q}_{i,t}(s_t, x_{i,t})}_{\text{Past knowledge}} + \alpha \underbrace{\left[(v_t - p_t) x_{i,t} + \rho \max_{x \in \mathcal{X}} \widehat{Q}_{i,t}(s_{t+1}, x) \right]}_{\text{Present learning based on a new experiment}},$$

where α governs the "forgetting" rate.

Exploitation-exploration tradeoff

The action $x_{i,t}$ is chosen as follows:

 $x_{i,t} = \begin{cases} \operatorname{argmax}_{x \in \mathcal{X}} \widehat{Q}_{i,t}(s_t, x), & \text{with prob. } 1 - \varepsilon_t, & \text{(exploitation)} \\ \widetilde{x} \sim \text{uniform distribution on } \mathcal{X}, & \text{with prob. } \varepsilon_t. & \text{(exploration)} \end{cases}$

where $\varepsilon_t = e^{-\beta t}$.

- Exploitation: A greedy approach to exploit what has already been learned
- Exploration: Improve knowledge about each possible action

Exploration generates "off-equilibrium" deviation experimentation

- Crucial for machines to form a collusion

Exploitation-exploration tradeoff

The action $x_{i,t}$ is chosen as follows:

 $x_{i,t} = \begin{cases} \operatorname{argmax}_{x \in \mathcal{X}} \widehat{Q}_{i,t}(s_t, x), & \text{with prob. } 1 - \varepsilon_t, \text{ (exploitation)} \\ \widetilde{x} \sim \text{uniform distribution on } \mathcal{X}, & \text{with prob. } \varepsilon_t. & \text{(exploration)} \end{cases}$

where $\varepsilon_t = e^{-\beta t}$.

- Exploitation: A greedy approach to exploit what has already been learned
- Exploration: Improve knowledge about each possible action

Exploration generates "off-equilibrium" deviation experimentation

- Crucial for machines to form a collusion

Adaptive market maker

- The market maker does not know the distributions of randomness
- It analyzes historical data on $\{v_{t-\tau}, p_{t-\tau}, z_{t-\tau}, y_{t-\tau}\}_{\tau=1}^{T_m}$ and estimates:

$$z_{t-\tau} = \xi_0 - \xi_1 p_{t-\tau},$$

$$v_{t-\tau} = \gamma_0 + \gamma_1 y_{t-\tau} + \epsilon_{t-\tau}$$
, with $\tau = 1, \cdots, T_m$.

- The adaptive pricing rule is

$$\boldsymbol{p}_t(\boldsymbol{y}) = \widehat{\gamma}_{0,t} + \frac{\theta \widehat{\gamma}_{1,t} + \widehat{\xi}_{1,t}}{\theta + \widehat{\xi}_{1,t}^2} \boldsymbol{y},$$

- Note: Results will not change with a Q-learning market maker

Outline

- 1. Theoretical benchmark
- 2. Simulation experiments

- Q-learning algorithms

- Experimental design

Simulation results

State variables: The minimalist set $s_t = \{p_{t-1}, v_t\}$

Environment parameters:

$$I = 2, \ \overline{v} = 1, \ \sigma_v = 1, \ \sigma_u = 0.1, \ \text{and} \ \xi = 500$$

Important: Agents do not know any environment parameters

Preference parameters: $\rho = 0.95$, and $\theta = 0.1$

Simulation parameters: $n_x = 15$, $n_p = 31$, $n_v = 10$, and $T_m = 10,000$

Hyperparameters: $\alpha = 0.01$ and $\beta = 10^{-5}$

Convergence criterion:

- Each speculator's optimal strategy does not change for 1,000,000 consecutive periods
- All N = 1,000 simulation sessions are simulated until convergence

Computation power:

- Implemented in C++
- 9 high-powered-computing servers, with 376 CPU cores

Outline

- 1. Theoretical benchmark
- 2. Simulation experiments

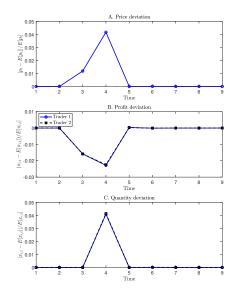
- Q-learning algorithms

- Experimental design

- Simulation results

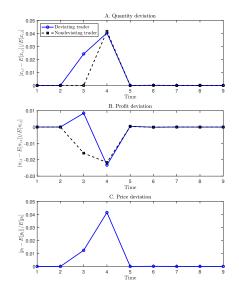
Price-trigger strategy ($\sigma_u / \sigma_v = 0.1$ and $\xi = 500$)

$$\Delta^{C} = 0.73$$
 and $\pi^{C}/\pi^{N} = 1.09$.

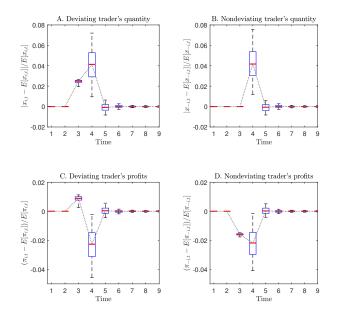


Punishment for deviation ($\sigma_u / \sigma_v = 0.1$ and $\xi = 500$)

$$\Delta^{C} = 0.73$$
 and $\pi^{C}/\pi^{N} = 1.09$.

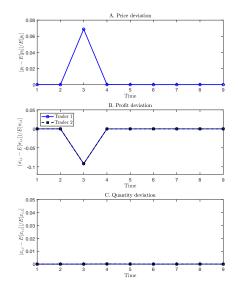


Distributions of IRFs

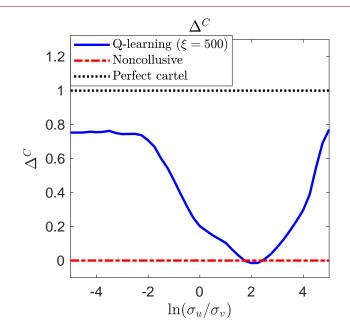


Biased learning ($\sigma_u / \sigma_v = 100$ and $\xi = 500$)

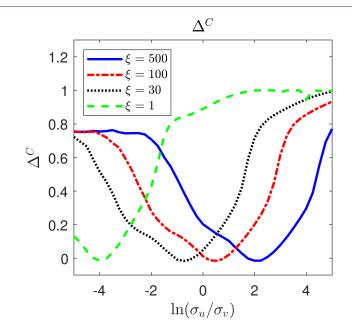
$$\Delta^{C} = 0.6$$
 and $\pi^{C}/\pi^{N} = 1.075$.



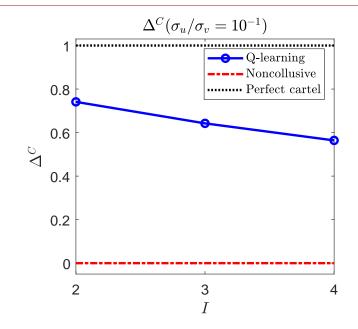
Collusion through artificial intelligence or stupidity



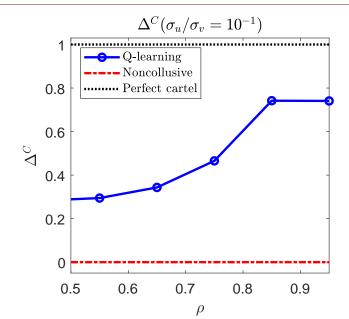
Properties #1, #2, #5(i) and #5(ii)



Properties #5(iii)



Properties #5(iv)



Conclusion

- This paper studies the "psychology" of informed AI speculators
- Algorithmic collusion emerges in the absence of communication
- How does the AI era of financial world look like?
 - Machines are often viewed as superior to humans:
 - Unconscious biases in human decision-making
 - Information-processing limitations of human brains
 - However, AI can hurt market efficiency and price informativeness
 - No matter information asymmetry is low or high
 - Due to "intelligence" or "stupidity"

- This paper studies the "psychology" of informed AI speculators
- Algorithmic collusion emerges in the absence of communication
- How does the AI era of financial world look like?
 - Machines are often viewed as superior to humans:
 - Unconscious biases in human decision-making
 - Information-processing limitations of human brains
 - However, AI can hurt market efficiency and price informativeness
 - No matter information asymmetry is low or high
 - Due to "intelligence" or "stupidity"

- This paper studies the "psychology" of informed AI speculators
- Algorithmic collusion emerges in the absence of communication
- How does the AI era of financial world look like?
 - Machines are often viewed as superior to humans:
 - Unconscious biases in human decision-making
 - Information-processing limitations of human brains
 - However, AI can hurt market efficiency and price informativeness
 - No matter information asymmetry is low or high
 - Due to "intelligence" or "stupidity"

- This paper studies the "psychology" of informed AI speculators
- Algorithmic collusion emerges in the absence of communication
- How does the AI era of financial world look like?
 - Machines are often viewed as superior to humans:
 - Unconscious biases in human decision-making
 - Information-processing limitations of human brains
 - However, AI can hurt market efficiency and price informativeness
 - No matter information asymmetry is low or high
 - Due to "intelligence" or "stupidity"

Literature

Al-powered pricing strategies in product markets

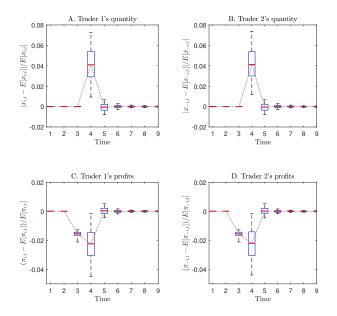
- Calvano_Calzolari_Denicolò_Pastorello (2020), Assad_Clark_Ershov_Xu (2021), Asker_Fershtman_Pakes (2022), Brown_MacKay (2023)
- Findings: Diminish the competitiveness and even lead to collusive behavior
- Difference: No information asymmetry, exogenous and fixed demand curve

Al-powered trading strategies in financial markets

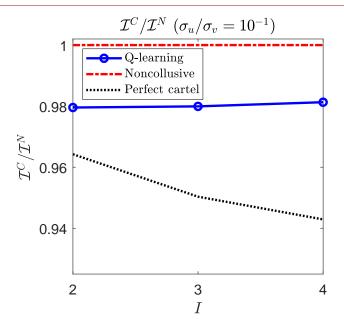
- Colliard_Foucault_Lovo (2022)
- Findings: Diminish the competitiveness and compromise price efficiency
- Difference: AI market makers, naive non-adaptive informed investors

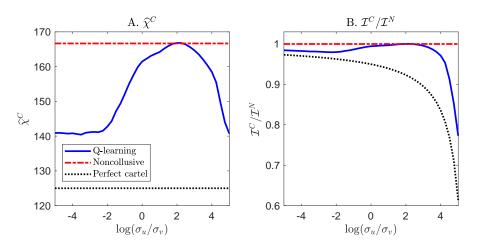
- A foundational framework for numerous RL algorithms
- Popularity among scientists and wall street practitioners
- Simplicity and transparency, with clear economic interpretations

Price-trigger strategy ($\sigma_u / \sigma_v = 0.1$ and $\xi = 500$)

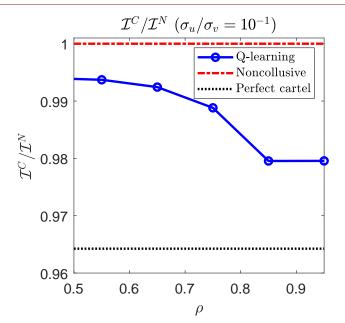


Properties #5(iii)

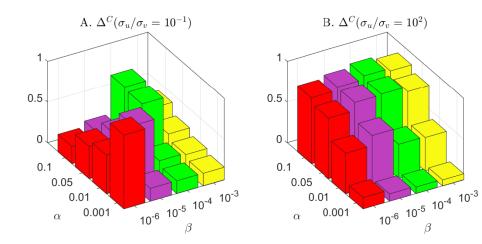




Properties #5(iv)

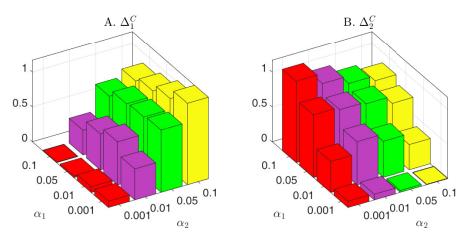


Hyperparameters α and β



 $\alpha \downarrow =$ more advanced AI algo that requires higher computational power

How to sustain collusion through biased learning?



- More advanced AI algo wins, while less advanced AI algo loses
- "Hub-spoke conspiracy:" Speculators adopt the same AI algo from the same technology supplier (e.g., Johnson_Sokol, 2023)

To improve market efficiency and price informativeness.

- Provide market makers with more incentives and capacities for pricing error minimization
- Avoid concentration of information technologies (i.e., make sure *I* is sufficiently large)
- Avoid concentration among the suppliers of the AI technologies