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“Principle of Parsimony” (Tukey, 1961)

Textbook Rule #1

“It is important, in practice, that we employ the smallest possible number of parameters for adequate

representations” (Box and Jenkins, Time Series Analysis: Forecasting and Control)

Principle clashes with massive parameterizations adopted by modern ML algorithms

▶ Leading edge GPT-3 language model (Brown et al., 2020) uses 175 billion parameters (GPT-4 has,

apparently, 1.76 trillion parameters)

▶ Return prediction neural networks (Gu, Kelly, and Xiu, 2020) use 30,000+ parameters

▶ To Box-Jenkins econometrician, seems profligate, prone to overfit, and likely disastrous out-of-sample...

...But this is incorrect!

▶ Image/NLP models with astronomical parameterization—that exactly fit training data—are best

performing models out-of-sample (Belkin, 2021)

▶ Evidently, modern machine learning has turned the principle of parsimony on its head
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... And It’s Happening In Finance Too

Building the “Case” for Financial ML

▶ Finance lit: Rapid advances in return prediction/portfolio choice using ML

▶ Little theoretical understanding of why (and healthy skepticism)

“Virtue of Complexity in Return Prediction” (Kelly, Malamud, Zhou, forthcoming JF)

▶ Main theoretical result: Out-of-sample univariate timing strategy performance generally increasing in

model complexity (# of parameters). Bigger models are better. Verified in data.

This Paper: ML in Cross-sectional Asset Pricing

▶ Main theoretical result: PF performance generally increasing in model complexity

▶ Higher portfolio Sharpe ratio
▶ Smaller pricing errors

▶ Prior evidence of empirical gains from ML are what we should expect

▶ Direct empirical support for theory
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Complexity in the Cross Section: Machine Learning Perspective

Traditional Approach Machine Learning Approach
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▶ Restrict specification so P/T ≈ 0

▶ Aligns IS and OOS performance

▶ May get lucky with spec, but can’t be

lucky on average

▶ Like shrinking before seeing data

▶ P/T → ∞ eliminates specification error

▶ IS overfit improves OOS performance

▶ Loss due to limits on learning

(breakdown of LLN, high variance)

▶ Mitigate with shrinkage after seeing data
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Intoduction to Asset Pricing I

▶ assets i = 1, · · · ,N have prices Pi,t and excess returns

Ri,t+1 =
Pi,t+1 + Dt+1

Pi,t
− Rf ,t︸︷︷︸

risk free rate

(1)

▶ if you invest fraction πi,t of your wealth Wt into security i , the rest stays on your bank account

and grows at the rate Rf ,t :

Wt =
∑
i

πi,tWt︸ ︷︷ ︸
investment in stock i

+ (Wt −
∑
i

πi,tWt)︸ ︷︷ ︸
bank account

(2)



Intoduction to Asset Pricing II

and then you sell your investments at time t and collect dividends so that

Wt+1 =
∑
i

Wtπi,t
Pi,t+1 + Dt+1

Pi,t
+ (Wt −

∑
i

πi,tWt)Rf ,t

= WtRf ,t + Wt

∑
i

πi,tRi,t+1

(3)

▶ Thus, the excess return on your wealth is

Wt+1

Wt
− Rf ,t =

∑
i

πi,tRi,t+1 = π′
tRt+1 (4)

▶ Thus, we want πt that gives good returns. But what is the criterion?



Intoduction to Asset Pricing III

▶ mean-variance optimization:

πt = argmax
πt

(
Et [π

′
tRt+1] − 0.5 γ︸︷︷︸

risk aversion

Et [(π
′
tRt+1)

2]
)

(5)

and hence the Mean-Variance Efficient (MVE) portfolio is

πt︸︷︷︸
tangency portfolio

= γ−1 (Et [Rt+1Rt+1])
−1︸ ︷︷ ︸

N×N covariance matrix

Et [Rt+1]︸ ︷︷ ︸
N×1 expected returns

(6)

▶ Now comes the big question: How do we measure the conditional expectations, Et [Rt+1] and

Et [Rt+1R
′
t+1]?

▶ Once can start with a simple prediction problem: measure Et [Rt+1] by running a regression on

observables (economic variables) St using past data (time series prediction)

▶ Virtue of Complexity in Return Prediction (Kelly, Malamud, and Zhou (2022):

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3984925


Intoduction to Asset Pricing IV

▶

Rt+1 =
∑
i

βiSi,t + εt+1 (7)

estimate

β̂ =

 z︸︷︷︸
ridge penalty

I +
1

T

∑
t

StS
′
t

−1

1

T

∑
t

StRt+1 (8)

with St ∈ RP = vector of random features St = f (Xt) and the prediction

πt = β̂′ St (9)

▶ you want the strategy to work. Build a timing strategy

Rπ
t+1 = πtRt+1 (10)

▶ complexity c = P/T , when P > T we have overparametrization



Intoduction to Asset Pricing V

▶ Theorem: Virtue of complexity. Out-of-sample (OOS) performance monotone increasing in c for

z∗=optimal shrinkage



There is no double acscent, only permanent ascent

R2 SR
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Many Assets = Cross-Section

▶ N assets (stocks) with returns Ri,t+1, i = 1, · · · ,N
▶ And characteristics Xi,t ∈ Rd (d characteristics per stock)

▶ So, we want to build the best portfolio πt so that

π′
tRt+1 =

N∑
i=1

πi,t︸︷︷︸
portfolio weight for stock i

Ri,t+1 (11)

has a high Sharpe Ratio

▶ Each security i (e.g., a stock) comes with characteristics Xi,t ∈ Rd , d is about 100− 200

▶ It is intuitive to search for

πi,t = w(Xi,t) (12)

▶ how do we find the function w ?



Complexity in the Cross Section: A Brief History I

▶ Standard solution: Restrict w

▶ E.g., Fama-French:

Xi,t = (Sizei,t , Valuei,t) (13)

and linear wi,t = b0 + b1Sizei,t + b2Valuei,t
▶ As a result

π′
tRt+1 =

N∑
i=1

wi,tRi,t+1︸ ︷︷ ︸
sum over stocks

=
N∑
i=1

(b0 + b1Sizei,t + b2Valuei,t)Ri,t+1

= b0

N∑
i=1

Ri,t+1︸ ︷︷ ︸
MKT

+ b1

N∑
i=1

Sizei,tRi,t+1︸ ︷︷ ︸
SMB

+ b2

N∑
i=1

Valuei,tRi,t+1︸ ︷︷ ︸
HML

(14)



Complexity in the Cross Section: A Brief History II

▶ Factor Zoo: d is large (Jensen, Kelly, and Pedersen (2022): d ≥ 153)

Fk,t+1 =
N∑
i=1

Xi,t(k)Ri,t+1︸ ︷︷ ︸
Characteristics−Managed Portfolio

π′
tRt+1 =

∑
k=1

λk︸︷︷︸
factor weight

Fk,t+1

w(Xi,t) = λ′Xi,t︸ ︷︷ ︸
linear function

= λk Xi,t(k)

(15)



Complexity in the Cross Section: Machine Learning Perspective I

Rather than restricting w(Xt)....

▶ ...expand parameterization, saturate with conditioning information

▶ build many non-linear transformations: For a large P,

Si,t(j) = fj(Xi,t)︸ ︷︷ ︸
nonlinear feature j for stock i

, j = 1, · · · ,P (16)

Xt → St embedding of Rd to RP .

▶ Approximate w with neural network:

w(Xi,t) ≈ λ′Si,t︸ ︷︷ ︸
linear−in−features

=
∑
j

λj fj(Xi,t)︸ ︷︷ ︸
nonlinear in X

(17)



Complexity in the Cross Section: Machine Learning Perspective II

wi,t=λ′Si,t

Si,t=f (Xi,t )

Xi,t

▶ Implies that empirical PF is a high-dimensional factor model with factors Ft+1 :

π′
tRt+1 = λ′S ′

tRt+1

=
∑
i

(λ′Si,tRi,t+1) = λ′
∑
i

Si,tRi,t+1︸ ︷︷ ︸
=Ft+1 ∈ RP×1

= λ′ Ft+1︸︷︷︸
vector of P factor returns

(18)



Complexity in the Cross Section: Machine Learning Perspective

The Objective:

▶ Maximize out-of-sample Sharpe ratio

The Choice:

▶ Fix T data points. Decide on “complexity” (number of factors P) to use in approximating model

The Tradeoff:

▶ Simple PF (P << T ) has low variance (thanks to parsimony) but is poor approximator of w

▶ Complex PF (P > T ) is good approximator, but may behave poorly (and requires shrinkage)

The Central Research Question:

▶ Which P should analyst opt for? Does benefit of more factors justify their cost?

Answer:

▶ Use the largest factor model (largest P) that you can compute
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Theory Environment
Model

▶ n assets with returns Rt+1

▶ Empirical PF Mt+1 = 1− λ′S ′
tRt+1

▶ Think of St as “generated features” in neural net with input Xt

▶ P × 1 vector of instruments, St (i.e., P factors Ft+1)

▶ (Ridge-penalized) objective

min
λ

E [(1− λ′S ′
tRt+1)

2] + zλ′λ

Solution:

λ̂(z) =

(
zI +

1

T

∑
t

FtF
′
t

)−1
1

T

∑
t

Ft

▶ Goal: Characterize out-of-sample behaviors, contrast simple (small P) models vs. complex models

▶ Tools: Joint limits as numbers of observations and parameters are large, T ,P →∞, RMT
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Complexity and the PF
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1. PF variance

▶ As c → 1, λ variance blows up. A

unique λ produces max SR, but it has

high variance
▶ When c > 1, variance drops with

model complexity! Why?
▶ Many λ’s exactly fit training data,

ridge selects one with small variance

2. PF expected returns

▶ Low for c ≈ 0 due to poor

approximation of true model
▶ Monotonically increases with model

complexity



Complexity and the PF
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Main theory result

▶ Complexity is a virtue—biggest model wins

▶ Approximation benefits dominate

costs of heavy parameterization
▶ For moderate complexity (c ≈ 1),

ridge shrinkage is beneficial
▶ For high complexity (c >> 1), ridge

shrinkage has small benefit (the

important shrinkage is implicit)

▶ Paper provides general, rigorous theoretical

statements and proofs that underlie plots

▶ Plots calculated from our theorems in a

reasonable calibration



Complexity and the PF: Other Theoretical Results

1. “Complexity wedge” = IS Performance – Expected OOS Performance

“Complexity wedge” = IS – True︸ ︷︷ ︸
“Overfit”

+ True – OOS︸ ︷︷ ︸
“Limits to Learning”

▶ Quantifiable based on training data

▶ Can infer performance of true PF and how far you are from it, but

cannot recover it!
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2. Show how to infer optimal shrinkage, z∗, from training data

3. There is no low-rank rotation of complex factors that preserves model performance (cf. Kozak, Nagel,

and Santosh, 2020)



Empirical Analysis

▶ Analyze empirical analogs to theoretical comparative statics

▶ Study conventional setting with conventional data

▶ Forecast target is a monthly return of US stocks from CRSP 1963–2021
▶ Conditioning info (Xi,t) is 130 stock characteristics from Jensen, Kelly, and Pedersen (2022)

▶ Out-of-sample performance metrics are:

▶ PF Sharpe ratio
▶ Mean squared pricing errors (factors as test assets)



Empirical Analysis
Random Fourier Features

▶ Empirical model: λ′S ′
tRt+1

▶ Need framework to smoothly transition from low to high complexity

▶ Adopt ML method known as “random Fourier features” (RFF)

▶ Let Xi,t be 130× 1 predictors. RFF converts Xi,t into

Sℓ,i,t = sin(γ′
ℓXi,t), γℓ ∼ iidN(0, γI )

▶ Sℓ,i,t : Random lin-combo of Xi,t fed through non-linear activation

▶ For fixed inputs can create an arbitrarily large (or small) feature set

▶ Low-dim model (say P = 1) draw a single random weight
▶ High-dim model (say P = 10,000) draw many weights

▶ In fact, RFF is a two-layer neural network with fixed weights (γ) in

the first layer and optimized weights (λ) in the second layer

Si,t =

sin(γ′Xi,t )
Xi,t

wi,t =

λ′Si,t
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Empirical Analysis
Training and Testing

▶ We estimate out-of-sample PF with:

i. Thirty-year rolling training window (T = 360)

ii. Various shrinkage levels, log10(z) = −12, ..., 3
iii. Various complexity levels P = 102, ..., 106

▶ For each level of complexity c = P/T , we plot

i. Out-of-sample Sharpe ratio of the kernels and

ii. Pricing errors on 106 “complex” factors: Ft+1 = S ′
tRt+1

▶ Also report Sharpe ratio and pricing errors of FF6 to benchmark our results



Out-of-sample PF Performance
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Main Empirical Result

▶ OOS behavior of ML-based PF closely matches

theory

▶ High complexity models

▶ Improve over simple models by a factor of 3

or more
▶ Dominate popular benchmarks like FF6



PF Performance in Restricted Samples: Sharpe Ratio
Market Capitalization Subsamples
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PF Performance in Restricted Samples: Pricing Errors
Market Capitalization Subsamples
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What About “Shrinking” With PCA?

K = 5 K = 10 K = 25
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Conclusions, I

▶ Asset pricing and asset management in midst of boom in ML research

▶ We provide new, rigorous theoretical insight into the behavior of ML models/portfolios

▶ Contrary to conventional wisdom: Higher complexity improves model performance

Virtue of Complexity: Performance of ML portfolios can be improved by pushing model parameterization

far beyond the number of training observations

▶ Not license to add arbitrary predictors to model. Instead, we recommend

i. including all plausibly relevant predictors

ii. using rich non-linear models rather than simple linear specifications
▶ Doing so confers prediction/portfolio benefits, even when training data is scarce and particularly

when accompanied by shrinkage

▶ In canonical empirical problem—pricing the cross section of returns—we find

▶ OOS Sharpe rise by factor of 4 relative to FF6 model, pricing errors reduced by a factor of 3
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Conclusions, II

▶ Clashes with philosophy of parsimony frequently espoused by economists

▶ Two oft-repeated quotes from famed statistician George Box:

All models are wrong, but some are useful.

Since all models are wrong the scientist cannot obtain a ‘correct’ one by excessive elaboration. On the

contrary, following William of Occam, he should seek an economical description of natural phenomena. Just

as the ability to devise simple but evocative models is the signature of the great scientist so overelaboration

and overparameterization is often the mark of mediocrity.

Occam’s Blunder? Small model is preferable only if it is correctly specified. But models are never

correctly specified. Logical conclusion?
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Appendix



Understanding The Theory

▶ Suppose c = P/T ≈ 0. Then, we know

λ = E [FF ′]−1E [F ] =
1

1 +MaxSR2
Var[F ]−1E [F ] , (19)

where we have defined

MaxSR2 = E [F ]′ Var[F ]−1E [F ] (20)

E [λ′Ft+1] = E [(λ′Ft+1)
2] = E [F ]′E [FF ′]−1E [F ] =

MaxSR2

1 +MaxSR2
(21)



Principal Components and Ridge I

▶ Var[F ] = U diag(µ)U ′, and we can define PCi to be the i-th column of U ′F ; and

θ = U ′E [F ] (22)

▶

R(PCi ) = PC ′
i Ft+1

E [R(PCi )] = θi , Var[R(PCi )] = µi , (SR(PCi ))
2 =

θ2i
µi

and
MaxSR2 = E [F ]′ Var[FF ′]−1E [F ] = E [F ]′U diag(µ−1)U ′E [F ]

= θ′ diag(µ−1)θ =
∑
i

θ2i
µi

=
∑
i

(SR(PCi ))
2 .

(23)



Principal Components and Ridge II

▶ Define

λ(z) = (zI + E [FF ′])−1E [F ] (24)

and

R infeasible(z) = F ′
t+1λ(z) (25)

▶ The first moment is

Rinfeas
1 (z) = E [R infeasible(z)] = E [F ]′(zI + E [FF ′])−1E [F ] =

A(z)

1 + A(z)
(26)

where

A(z) = E [F ]′(zI + Var[F ])−1E [F ] =
∑
i

(SR(PCi ))
2 µi

µi + z
. (27)

▶ and

Rinfeas
2 (z) = E [(R infeasible(z))2] =

d

dz

(
zA(z)

1 + A(z)

)
. (28)



Principal Components and Ridge III

In this case,

SR infeas(z) =
Rinfeas

1 (z)

(Rinfeas
2 (z))1/2

(29)

is monotone decreasing in z .



Random Matrix Theory and Implicit Regularization I

▶ When c = P/T > 0, estimating E [FF ′] and E [F ] becomes infeasible and

λ̂(z) =

(
zI +

1

T

∑
t

FtF
′
t

)−1
1

T

∑
t

Ft+1 ̸≈ (zI + E [FF ′])−1E [F ] (30)

because

BT =
1

T

∑
t

FtF
′
t ̸≈ E [FF ′] and F̄T =

1

T

∑
t

Ft+1 ̸≈ E [F ] (31)

▶ Stieltjes transforms

m(−z) = P−1 tr((zI + Var[FF ′])−1) = P−1
∑
i

(z + µi )
−1

m(−z ; c) = P−1 tr
(
(zI + BT )

−1
) (32)



Random Matrix Theory and Implicit Regularization II

▶

ξ(z ; c) =
1

T
F ′
T+1 (zI + BT )

−1 FT+1 ≤ c z−1 (33)

▶ The implicit shrinkage function

Z∗(z ; c) = z (1 + ξ(z ; c)) (34)

▶ Theorem When P → ∞, P/T → c :

m(−z ; c) =
Z∗(z ; c)

z
m(−Z∗(z ; c)) (35)



Implicit Regularization and Expected Return

Recall that

Rinfeas
1 (z) = E [R infeasible(z)] = E [F ]′(zI + E [FF ′])−1E [F ] =

A(z)

1 + A(z)
(36)

Our goal is to understand

R1(z ; c) = E [λ̂(z)′Ft+1] (37)

where

Rinfeas
1 (z) = R1(z ; 0)︸ ︷︷ ︸

zero complexity

(38)

Theorem When P → ∞, P/T → c :

R1(z ; c) = Rinfeas
1 (Z∗(z)) (39)



The Risk Of Doing ML

Theorem Suppose that E [F ] = 0. Then,

lim
P→∞, P/T→c

E [RF
t+1(z)] = 0. (40)

Yet,

lim
P→∞, P/T→c

E [(RF
t+1(z))

2] = G (z ; c) > 0 , (41)

where

G (z ; c) = lim
T→∞,P/T→c

1

T
E [(F ′

t1(zI + BT )
−1Ft2)

2] (42)

for any t1 ̸= t2 is given by

G (z ; c) = (ξ(z ; c)(1 + ξ(z ; c)) + zξ′(z ; c) + (ξ(z ; c))2)/(1 + ξ(z ; c))2. (43)

In particular, G (z ; c) is monotone decreasing in z and increasing in c .



Where Does The Risk Of Doing ML Come From?

To understand how the big data regime produces this intrinsic noise, consider a simple portfolio

strategy that invests proportionally to the historical mean returns:

RM
t+1 = F̄ ′

T FT+1 . (44)

Then,

E [RM
t+1] = E [F̄ ′

T FT+1] = E [F̄T ]E [FT+1] = 0 , (45)

under the assumption that E [F ] = 0. Yet,

E [(RM
t+1)

2] = E [(F̄ ′
T FT+1)

2] = tr E [F̄T F̄
′
TFT+1F

′
T+1]

= tr E [F̄T F̄
′
TΨ] =

1

T 2

∑
t

tr E [FtF
′
tΨ] =

1

T
tr(Ψ2)

(46)

If, for example, Ψ = I , this quantity equals P/T → c . Thus, many minor estimation errors

accumulate and generate non-trivial risk for the portfolio.



The Second Moment

Theorem

We have

E [(RF
T+1(z))

2] → Rinfeas
2 (Z∗(z ; c))︸ ︷︷ ︸

implicit regularization

+ G (z ; c)(1− 2Rinfeas
1 (Z∗(z ; c)) +Rinfeas

2 (Z∗(z ; c)))︸ ︷︷ ︸
estimation risk

,

(47)

where

Rinfeas
2 (z) = R2(z ; 0) =

d

dz

(
zA(z)

1 + A(z)

)
(48)

is the second moment of the return on the infeasible portfolio, F ′
T+1(zI + E [FF ′])−1E [F ], estimated

using T = ∞.


