
Optimising Sustainable Financial Portfolios

Martin Elsman1

1Department of Computer Science, University of Copenhagen (DIKU)

September 26, 2023

Martin Elsman (DIKU) @Nordic Fintech SYMPOSIUM ’2023 September 26, 2023 1 / 15



Introduction Context and Gap

Financial Portfolio Management

Investors are faced with a multitude of factors
that need to be balanced, including portfolio
returns, various kinds of risks, and sustainability
concerns.

Modern portfolio theory (Markowitz) and
various derivatives thereof provide techniques
for balancing risk and return.

Modern portfolio theory and “the efficient frontier”

But, how can an investor incorporate sustainability concerns?

Martin Elsman (DIKU) @Nordic Fintech SYMPOSIUM ’2023 September 26, 2023 2 / 15



Introduction Context and Gap

What are Sustainable Portfolios?

How can an investor determine that a portfolio is sustainable?

How can investors make sustainable financial decisions?

Solution to the Rescue

Environmental, Social, and Governance (ESG) scores are reported for exchange-traded
companies by independent actors.

ESG data adds another dimension of tradeoff to the efficient frontier!

Martin Elsman (DIKU) @Nordic Fintech SYMPOSIUM ’2023 September 26, 2023 3 / 15



Introduction Context and Gap

Existing Solutions

Filtering
An investor may choose to invest only in assets that have certain ESG properties.

The ESG-Efficient Frontier
Given a minimum weighted-ESG-score for a portfolio, an investor may choose to optimise the
Sharpe ratio, the ratio between the portfolio’s return and the portfolio’s variance (risk).

The investor thereby reduces the dimensionality of the
problem from three to two [Heje Pedersen et al, 2021].

This approach makes it possible to identify investors
who are ESG-ignorant (a portfolio exists that has a
higher weighted-ESG-score and the same Sharpe ratio...)

The “ESG-efficient frontier”

Martin Elsman (DIKU) @Nordic Fintech SYMPOSIUM ’2023 September 26, 2023 4 / 15



Innovation

A 3D ESG-Efficient Frontier

In this project,∗ we seek to compute a 3D ESG-efficient frontier.

For each ESG-level (e.g., minimum weighted-ESG-score or minimum weighted-E-score),
we compute an efficient frontier, maximising return for a particular risk-level.

This strategy may require us to solve > 10.000 optimisation problems.

Notice that each problem is an optimisation problem with inequality constraints
(requiring that the weighted ESG-score is greater than a threshold), which are more
difficult to solve than ordinary linear optimisation problems.

(∗) The project “Optimising Sustainable Financial Portfolios” is funded in 2023 by
Copenhagen Fintech. Company partners are FinE (a Fintech development firm) and Optimal
Invest (a family office investment firm).

Martin Elsman (DIKU) @Nordic Fintech SYMPOSIUM ’2023 September 26, 2023 5 / 15



Innovation

Project Activities
Supervision of six computer science and economics
BSc projects in 2023 on the subject of sustainable
financial optimisation (14 students). Theoretical
developments and implementation of Python
libraries for providing investment guidance.
Supervision of one computer science MSc thesis
project on data-parallel techniques for optimising
sustainable finance.
Student workshops.

FinE, with Claus Madsen, has provided ESG data from a collaboration partner
(ApexESGenterprise; https://www.esgenterprise.com).

Optimal Invest has provided feedback and expressed interest in tools that can guide
them about sustainable investments.

Martin Elsman (DIKU) @Nordic Fintech SYMPOSIUM ’2023 September 26, 2023 6 / 15

https://www.esgenterprise.com


Data-Parallelism

How to Solve 10.000 Non-Linear Optimisation Problems in Parallel?

On a single CPU, solving 10.000 simple non-linear optimisation
problems (fewer than 20 stocks on S&P 500) with associated ESG
data takes several minutes (using CVXPY).

Larger universes (e.g., S&P 500) result in much longer compute
times (require also covariance shrinkage [Ledoit & Wolf, 2003]).

More constraints (e.g., no shortage) give longer compute times.

Other risk measures (e.g., VaR, CVaR, CVA) demand even more compute power.

Solution: Data-parallel implementations on GPUs!

Martin Elsman (DIKU) @Nordic Fintech SYMPOSIUM ’2023 September 26, 2023 7/ 15



Data-Parallelism

Task Parallelism versus Data Parallelism

Task parallelism (CPUs): Multiple (e.g., 16) cores run different tasks (on different data).

Data parallelism (GPUs): Many (e.g, 10.000) cores run the same task simultaneously (on
different data).

GPU programming is different from CPU programming!

Many pitfalls with large performance drops and opportunities for errors:

Memory coalescing problems, thread divergence problems, shared- and private memory,
memory fences, ...

Martin Elsman (DIKU) @Nordic Fintech SYMPOSIUM ’2023 September 26, 2023 8 / 15



Data-Parallelism

Increased Focus on Tensor Programming

The concept of multi-dimensional arrays (i.e., tensors) is currently
undergoing a renaissance in terms of available programming li-
braries and code bases.

The increased attention is primarily driven by:

The last decade’s machine learning revolution, which is
founded on tensor-programming.

The move towards massively data-parallel hardware for
high-performance computing, for which
tensor-programming is a natural match.

Martin Elsman (DIKU) @Nordic Fintech SYMPOSIUM ’2023 September 26, 2023 9 / 15



Futhark The Language

Futhark,1 the Language — Purely Functional & Data-Parallel

Features a selection of array combinators with parallel semantics:
val map [n] ’a ’b : (a → b) → [n]a → [n]b
val scan [n] ’a : (a → a → a) → a → [n]a → [n]a
val reduce ’a : (a → a → a) → a → []a → a
val filter ’a : (a → bool) → []a → []a
val iota : (n:i64) → [n]i64 -- may fail

Notice that types may be parameterized over types and array sizes.

Examples:
let xs = iota 1000000 -- create array [0,1,...,999999]
let ys = map (+2) (iota 1000000) -- add two to each element in xs
let y = reduce (+) 0 xs -- sum elements
let odds = filter (\x → x%2 == 1) ys -- find the odd elements

1Futhark is joint work with a number of researchers @ DIKU, including Troels Henriksen, Cosmin Oancea, Fritz
Henglein, Ken Friis Larsen, and Philip Munksgaard.

Martin Elsman (DIKU) @Nordic Fintech SYMPOSIUM ’2023 September 26, 2023 10 / 15



Futhark The Language

Example: Matrix-Multiplication in Futhark

let matmul [n][m][p] (a:[n][m]f64) (b:[m][p]f64) : [n][p]f64 =
map (\arow →

map (\bcol → reduce (+) 0 (map2 (*) arow bcol))
(transpose b)

) a

Notice:
Futhark can assume compatibility of array dimensions and generate efficient boundary
check-free code.
When calling matmul, Futhark must be able to establish that the array sizes match.
The programmer may insert type constraints (:>) for which sizes are checked dynamically.

Such type constraints are rarely needed and when they are, they are explicit (44k lines of
benchmark code contains 66 size constraints, mostly in pre- and post-processing code).

Martin Elsman (DIKU) @Nordic Fintech SYMPOSIUM ’2023 September 26, 2023 11 / 15



Futhark The Compiler

Futhark, the Compiler (I)

Supports higher-order modules, which are
eliminated at compile time.

Supports a restricted notion of higher-order
functions, which are eliminated at compile time.
(functions may not appear in arrays or returned by
branches of conditionals)

Other features: Open source, easy to download
and use, used for educational and research
purposes, package management... See
http://futhark-lang.org. . .

Modularised variants of
Conway’s Game of Life.

Functional images—Mandelbrot
merged with skewed chess board.

Martin Elsman (DIKU) @Nordic Fintech SYMPOSIUM ’2023 September 26, 2023 12 / 15

http://futhark-lang.org


Futhark The Compiler

Futhark, the Compiler (II)

Targets a series of architectures, including
GPUs and CPUs through CUDA, OpenCL, C,
and PyOpenCL.

Supports nested regular parallelism and
generates multi-versioned code using a se-
ries of aggressive techniques for fusion, flat-
tening, and tiling. 0 1 2 3 4 5 6 7 8 9 10

n

0µs

100µs

200µs

300µs

400µs

500µs

moderate

incremental

incremental (auto-tuned)

cuBLAS

n
Autotuned Futhark code for multiplying a
2n × 2(20−2n) matrix with its transposition.

Irregular nested parallelism must be flattened manually by the user, for instance using
segment arrays. Higher-order library functions encapsulate certain patterns of irregular
flattening.

Martin Elsman (DIKU) @Nordic Fintech SYMPOSIUM ’2023 September 26, 2023 13 / 15



Futhark The Compiler

The 3D ESG-Efficient Frontier in 2.3 Seconds on a GPU

Plot from MSc thesis by
Kasper Unn Weihe: Con-
vex Optimization and Paral-
lel Computing for Portfolio
Optimization. 2023.

Martin Elsman (DIKU) @Nordic Fintech SYMPOSIUM ’2023 September 26, 2023 14 / 15



Future Work

Ongoing Work. More to come...

Allow for other risk measures (Greeks, VaR, CVaR, CVA, XVA, ...)

Time series of ESG data...

Other instruments (bonds, swaps, options, OTCs)...

Multi-currency considerations...

Other related application areas

Computational economics (e.g., computing equilibriums in the Danish car fleet).

Martin Elsman (DIKU) @Nordic Fintech SYMPOSIUM ’2023 September 26, 2023 15 / 15


	Introduction
	Context and Gap

	Innovation
	Data-Parallelism
	Futhark
	The Language
	The Compiler

	Future Work

