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Motivation: ML and Implementable Portfolios

• ML models are great at predicting stock returns
• For example, Gu et al. (2020)

• But most ML papers ignore trading costs, implying unrealistic

• profits from illiquid stocks (Avramov et al., 2023)

• key characteristics, e.g. short-term reversal (Chen et al., 2023)

• Questions:
• Can investors benefit from ML after t-costs?

• Which signals have greatest economic feature importance?

• Lessons for asset pricing?
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What We Do

• We introduce the “Implementable efficient frontier” (IEF)

• After-cost, out-of-sample version of standard efficient frontier

• We show that

• Standard ML implementations leads to a poor IEF

• New theory-guided ML leads to a powerful IEF

• Economic feature importance:

• Quality and Value: large impact on the IEF

• Short-Term Reversal: limited impact for a large investor
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Almost the Standard Efficient Frontier – but OOS
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The Implementable Efficient Frontier

Without TC

With TC

0.0

0.2

0.4

0.0 0.1 0.2 0.3
Volatility

E
xc

es
s 

re
tu

rn
s 

(n
et

 o
f t

ra
di

ng
 c

os
t)

Markowitz−ML Markowitz−ML (gross)

Risk and expected return net of t-costs with a wealth of $10B by 2020

Everything is out-of-sample: 1981-2020

Dotted line: Mean-variance frontier of risky assets,
∑

i πi = 1, without t-costs

4 / 36



The Implementable Efficient Frontier

Without TC

0.0

0.2

0.4

0.0 0.1 0.2 0.3
Volatility

E
xc

es
s 

re
tu

rn
s 

(n
et

 o
f t

ra
di

ng
 c

os
t)

Portfolio Sort Markowitz−ML Markowitz−ML (gross)

Risk and expected return net of t-costs with a wealth of $10B by 2020

Everything is out-of-sample: 1981-2020

Dotted line: Mean-variance frontier of risky assets,
∑

i πi = 1, without t-costs

4 / 36



The Implementable Efficient Frontier

Without TC

Static−ML (one layer)
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The Implementable Efficient Frontier: By Assets
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Model
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Model
Securities: N risky assets traded at times t = ...,−1, 0, 1, 2, ...

• Excess returns: rt = (r1,t , ..., rN,t)
′

• Characteristics: st = (s1,t , ..., sN,t) ∈ RN×K

• Expected returns

Et [rt+1] = μ(st)

• T-costs

• Market impact: 1
2
Λtτt

• Total trading cost: 1
2
τ ′
t Λtτt

• T-cost example
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• Excess returns: rt = (r1,t , ..., rN,t)
′

• Characteristics: st = (s1,t , ..., sN,t) ∈ RN×K

• Expected returns

Et [rt+1] = μ(st)

• T-costs

• Market impact: 1
2
Λtτt

• Total trading cost: 1
2
τ ′
t Λtτt

• T-cost example

Investor

• Portfolio weight (key control variable): πn,t = π$
n,t/wt

• Trade:

τt = π$
t − diag(1 + r f

t + rt)π
$
t−1 = wt (πt − gtπt−1)

where gt = diag
(

1+r f
t +rt

1+gw
t

)
captures the growth in portfolio weights

7 / 36



Model: Objective

Mean-variance utility with risk aversion γ:

• Choose πt for all t to maximize

utility = lim
T→∞

1

T

T∑

t=1

[returnt+1(πt) − TCt(πt , πt−1) − riskt+1(πt)]

= E
[
μ(st)

′πt −
w

2
(πt − gtπt−1)

′ Λ (πt − gtπt−1) −
γ

2
π′

tΣπt

]
,
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Model: Objective

Mean-variance utility with risk aversion γ:

• Choose πt for all t to maximize

utility = lim
T→∞

1

T

T∑

t=1

[returnt+1(πt) − TCt(πt , πt−1) − riskt+1(πt)]

= E
[
μ(st)

′πt −
w

2
(πt − gtπt−1)

′ Λ (πt − gtπt−1) −
γ

2
π′

tΣπt

]
,

What is new? General μ and stationary state variables → ML

• Percentage returns, rt , their means, μ(st), variances, Σ, t-cost, Λ

• Fractional portfolio weights, πt

• Portfolio growth, gt , is a complication, cf. Constantinides (1986)

• Gârleanu and Pedersen (2013) focus on π# =number of shares and

r# =price changes so no growth, g ≡ 1
• but r# =price changes not stationary empirically
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Our Dynamic Solution
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Key Result: Optimal Strategy

Proposition (Optimal dynamic strategy)
The solution to the portfolio problem is

πt = m gtπt−1 + (I − m)At

with aim portfolio At

At = (I − m)−1
∞∑

τ=0

(mḡ)τ cEt

[
1

γ
Σ−1μ(st+τ )

︸ ︷︷ ︸
Markowitzt+τ

]

where c = γ
w

mΛ−1Σ and m given in the paper.
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Implementing the Dynamic Solution with ML
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Machine Learning about Portfolio Weights: Portfolio-ML

• Standard ML objective minimizes squared return errors:

min
f

1

NT

∑

n,t

(rn,t − f (sn,t))
2

• But we want economic objective that maximizes utility:

max
π

utility(π) =
1

T

T∑

t=1

[returnt+1(πt) − TCt(πt , πt−1) − riskt+1(πt)]

Difficult to solve: π depends on current and past signals

• Our Proposition suggests two solutions:

1. Use theoretical solution, plus standard ML over many horizons

2. Use theoretical solution, plus trick to find A directly via ML
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Implementing Key Result in Practice: Multiperiod-ML

• Use our Proposition to find A

AMultiperiod-ML
t = (I − m)−1

∞∑

τ=0

(mḡ)τc
1

γ
Σ−1Et [rt+1+τ ]

by using ML to estimate Et [r
i
t+1+τ ] across horizons τ

• Compute portfolio πMultiperiod-ML
t :

• Initial portfolio: πMultiperiod-ML
0 = 0

• Successive portfolios:

πMultiperiod-ML
t = m gtπ

Multiperiod-ML
t−1 + (I − m)AMultiperiod-ML

t
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Implementing Key Result in Practice: Multiperiod-ML

• Use our Proposition to find A

AMultiperiod-ML
t = (I − m)−1

∞∑

τ=0

(mḡ)τc
1

γ
Σ−1Et [rt+1+τ ]

by using ML to estimate Et [r
i
t+1+τ ] across horizons τ

• Compute portfolio πMultiperiod-ML
t :

• Initial portfolio: πMultiperiod-ML
0 = 0

• Successive portfolios:

πMultiperiod-ML
t = m gtπ

Multiperiod-ML
t−1 + (I − m)AMultiperiod-ML

t

• Insight: t-costs → relevance of short- and long-run returns
• i.e., the whole term structure of returns

• because investor will be “stuck” with positions over time
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Machine Learning about Portfolio Weights: Portfolio-ML

• To find the optimal At , we propose a linear parametric portfolio:

APortfolio-ML
t = stβ, β ∈ Rp

• Maximizing utility with this parameterization leads to:

β̂ = (ET [Σ̃t ])
−1ET [r̃t+1]

where ET [Σ̃t ] and ET [r̃t+1] can be computed from observed data
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Machine Learning about Portfolio Weights: Portfolio-ML

• To find the optimal At , we propose a linear parametric portfolio:

APortfolio-ML
t = stβ, β ∈ Rp

• Maximizing utility with this parameterization leads to:

β̂ = (ET [Σ̃t ])
−1ET [r̃t+1]

where ET [Σ̃t ] and ET [r̃t+1] can be computed from observed data

• Closed-form solution to extremely hard problem!

Portfolio-ML solution details
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Machine Learning about Portfolio Weights: Portfolio-ML

• We add a couple of “ML modifications” to the linear solution

1. ML modification 1: Add ridge penalty chosen via

cross-validation

2. ML modification 2: Use random features transform to create a

non-linear parametric portfolio

APortfolio-ML
t = RF (sn,t)β

• β̂ still has a closed-form solution, that is now regularized by the

ridge penalty and captures non-linearities via the RF transform

Random features details Benchmark portfolio choice methods with ML

Alternative implementation: Multiperiod-ML
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Empirical Setup and Results
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Data and Empirical Methodology

• Sample: Monthly data on US stocks, 1952–2020

• CRSP stocks, market-cap > 50th percentile of NYSE stocks,

i.e., roughly the 1000 largest stocks

• Risk: Estimate Σt via factor model based on characteristics

• T-cost: Assume diagonal Λt , with λn,n ∝ 1/DTVn,t

Candidate portfolios overview ML and portfolio tuning
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Out-of-Sample Performance 1981-2020

Method R Vol. SRgross TC R-TC SRnet Utility Turnover Lev.

One tuning layer

Portfolio-ML 0.20 0.14 1.43 0.008 0.19 1.38 0.095 0.32 3.60

Multiperiod-ML 0.32 0.34 0.95 0.182 0.14 0.41 -0.437 1.47 12.70

Static-ML 0.28 0.27 1.06 0.033 0.25 0.94 -0.106 0.76 11.21

Portfolio Sort 0.17 0.15 1.10 1.972 -1.81 -11.87 -1.921 2.60 2.00

Markowitz-ML 3.12 1.56 2.00 + - - - 56.33 53.15

Two tuning layers

Multiperiod-ML∗ 0.11 0.08 1.33 0.014 0.09 1.16 0.060 0.40 2.50

Static-ML∗ 0.13 0.10 1.36 0.024 0.11 1.11 0.060 0.61 3.22

Portfolio−ML Multiperiod−ML* Static−ML* Portfolio Sort Markowitz−ML

Gross return
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Economic Feature Importance
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Theme permuted: None Quality Value Short−Term Reversal

• Loosing information from Short-Term Reversal doesn’t affect

implementable efficient frontier (low economic feature importance)

• Loosing information from Quality or Value greatly affects the

implementable efficient frontier (high economic feature importance)
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Economic Feature Importance

Portfolio−ML Markowitz−ML
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Other Results

• Theoretical results

• Proposition 1: The Sharpe ratio along the implementable

efficient frontier is declining with σ. Hence, efficient frontier is

no longer a straight line, and leverage is costly

• Proposition 4: Trading cost increase when investor takes more

risk, but aim becomes more tilted towards persistent signals

and liquid stocks

• Proposition 5: Tiny investors hold Markowitz, huge investors

holds mostly risk-free asset plus “maximum dollar portfolio”

• Empirical results

• Outperformance is statistically significant

• Portfolio-ML trades smoothly, especially for illiquid stocks

• Low correlation between Portfolio-ML and Markowitz-ML

(important for SDF pricing!)
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Conclusion

We develop a method for optimal portfolio selection when

• trading is costly

• returns predictable by a general function of characteristics

• driving state variables are stationary, thus handling portfolio growth

Findings

1. Intuitive solution, which can be implemented via ML

2. Empirical results show significant out-of-sample gains

3. Novel view of which security characteristics are important
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Appendix
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T-costs - Example

T-costs: Market impact, 1
2Λtτt , so t-cost 1

2τ ′
tΛtτt

Example: 1 stock with 1
2Λ = 10−8 and price of $100/share

• Trade: τ = $1M, i.e., buy 10,000 shares
• Market impact: 1

2Λτ = 10−8 × $1M = 1%

• Price moves from $100 to $102 with average fill of $101

• Total cost: $1M × 1% = $10, 000

• Double the trade: τ = $2M, i.e., buy 20,000 shares
• Market impact: 1

2Λτ = 10−8 × $2M = 2%

• Price moves from $100 to $104 with average fill of $102

• Total cost: $2M × 2% = $40, 000

• Quadruples!

Back
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Portfolio-ML Solution Details
• Portfolio depends on current and past aim portfolios, At = stβ:

πt =
∞∑

θ=0

(
θ∏

τ=1

m gt−τ+1

)

(I − m)At−θ =

[
∞∑

θ=0

(
θ∏

τ=1

m gt−τ+1

)

(I − m)st−θ

]

︸ ︷︷ ︸
≡Πt

β

• Inserting πt = Πtβ into the expression for utility, we get

utility =
1

T

∑

t

[
r ′t+1πt −

γ

2
π′

tΣπt −
w

2
(πt − gtπt−1)

′ Λ (πt − gtπt−1)
]

=
1

T

∑

t

[
r ′t+1Πtβ −

γ

2
β′Π′

tΣΠtβ −
w

2
(Πtβ − gtΠt−1β)′ Λ (Πtβ − gtΠt−1β)

]

=
1

T

∑

t





r ′t+1Πt
︸ ︷︷ ︸
≡r̃ ′t+1

β −
1

2
β′ [γΠ′

tΣΠt + w(Πt − gtΠt−1)
′Λ(Πt − gtΠt−1)

]

︸ ︷︷ ︸
≡Σ̃t

β







≡ ET [r̃ ′t+1]β −
1

2
β′ET [Σ̃t ]β

• Solution with ridge penalty −λβ′β is closed-form: β = (ET [Σ̃t ] + λI )−1ET [r̃t+1]

Back 26 / 36



Random feature regression details

• Want to go from linear portfolio: APortfolio-ML
t = stβ

• to a more general ML approach: APortfolio-ML
t = f (st)
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Random feature regression details

• Want to go from linear portfolio: APortfolio-ML
t = stβ

• to a more general ML approach: APortfolio-ML
t = f (st)

• Simple method: random feature (RF) regression

f (sn,t) ≈ RF (sn,t)β

where

RF (sn,t) =
1
√

p

[
sin(s ′n,tw

1), cos(s ′n,tw
1), . . . , sin(s ′n,tw

p/2), cos(s ′n,tw
p/2)

]′
,

w j ∈ R115 ∼ iidN(0, η2I ) for j = 1, ..., p/2
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Random feature regression details

• Want to go from linear portfolio: APortfolio-ML
t = stβ

• to a more general ML approach: APortfolio-ML
t = f (st)

• Simple method: random feature (RF) regression

f (sn,t) ≈ RF (sn,t)β

where

RF (sn,t) =
1
√

p

[
sin(s ′n,tw

1), cos(s ′n,tw
1), . . . , sin(s ′n,tw

p/2), cos(s ′n,tw
p/2)

]′
,

w j ∈ R115 ∼ iidN(0, η2I ) for j = 1, ..., p/2

• Non-linear parametric portfolio with β ∈ Rp

APortfolio-ML
t = diag

(
1

σn,t

)

RF (st)β

• Everything works just the same as linear

• Need to tune hyper-parameters p, η and ridge penalty λ

Back 27 / 36



Alternative Implementation: Multiperiod-ML

• Use ML to estimate Et [r
i
t+1+τ ] across horizons τ

• Compute the aim portfolio at each time

AMultiperiod-ML
t = (I − m)−1

∞∑

τ=0

(mḡ)τc
1

γ
Σ−1Et [rt+1+τ ]

• Compute portfolio πMultiperiod-ML
t :

• Initial portfolio: πMultiperiod-ML
0 = 0

• Successive portfolios:

πMultiperiod-ML
t = m gtπ

Multiperiod-ML
t−1 + (I − m)AMultiperiod-ML

t
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Alternative Implementation: Multiperiod-ML

• Use ML to estimate Et [r
i
t+1+τ ] across horizons τ

• Compute the aim portfolio at each time

AMultiperiod-ML
t = (I − m)−1

∞∑

τ=0

(mḡ)τc
1

γ
Σ−1Et [rt+1+τ ]

• Compute portfolio πMultiperiod-ML
t :

• Initial portfolio: πMultiperiod-ML
0 = 0

• Successive portfolios:

πMultiperiod-ML
t = m gtπ

Multiperiod-ML
t−1 + (I − m)AMultiperiod-ML

t

• Insight: t-costs → relevance of short- and long-run returns
• i.e., the whole term structure of returns

• because investor will be “stuck” with positions over time
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ML in Asset Pricing: Standard Approach
Two-step approach:

1. ML to predict returns

min
f :RK→R

1

TN

∑

n,t

[rn,t+1 − f (sn,t)]
2 .

2. After ML is done

• Use predictions to build long/short factor: πFactor-ML
t

• Possibly combine with risk estimates: πMarkowitz-ML
t

• Possibly even perform t-cost optimization: πStatic-ML
t
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ML in Asset Pricing: Standard Approach
Two-step approach:

1. ML to predict returns

min
f :RK→R

1

TN

∑

n,t

[rn,t+1 − f (sn,t)]
2 .

2. After ML is done

• Use predictions to build long/short factor: πFactor-ML
t

• Possibly combine with risk estimates: πMarkowitz-ML
t

• Possibly even perform t-cost optimization: πStatic-ML
t

• We compare our approach to each of these
• πStatic-ML

t sophisticated: ML + risk + t-cost-optimization

• should work reasonably well, but

• only considers returns over t + 1 while the optimal solution

consider t + 1, t + 2, . . .

back
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Candidate Portfolio Methods

EML
t (rt+1) Vart(rt+1) T-cost Fwd-looking dynamics

Factor-ML Yes

Markowitz-ML Yes Yes

Static-ML Yes Yes Yes

Multiperiod-ML Yes Yes Yes EML
t (rt+τ )

Portfolio-ML Yes Yes utility(At)
Back
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ML and Portfolio Tuning

• Machine Learning: Random feature regression (RFF)

• either for predicting portfolio weights (portfolio-ML)

• or for predicting returns (other methods)

• Portfolio tuning:

• Out-of-sample (OOS) period starts in 1981
• Two layers of “portfolio tuning”

1st: Find RFF hyper-parameters for all methods

2nd: Choose hyper-parameters that force Static-ML and

Multiperiod-ML to take less risk

• All hyper-parameters are updated yearly

Portfolio tuning details
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Portfolio Tuning
Train-validation-test split to find hyperparameters

• 1st tuning layer: Find λ, p, η for Random Feature Regression

• 2nd tuning layer: Find optimal u, v , k for portfolios

E∗
t [rt+τ ] = uEt [rt+τ ]

Σ∗
t = Σt + v diag(σt)

Λ∗
t = kΛt

• OOS test period starts in 1981, hyper-parameters updated yearly

Hyper-parameter Method

1st tuning layer, h Portfolio-ML Multiperiod-ML Static-ML

Ridge penalty, λ {0, e4, e5, ..., e8} {0, e−10, e−9.8, ..., e10} {0, e−10, e−9.8, ..., e10}

#random features, p {26, 27, 28, 29} {21, 22, . . . , 210} {21, 22, ..., 210}

Std of weights, η {e−3, e−2} {e−4, e−3, e−2, e−1} {e−4, e−3, e−2, e−1}

2nd tuning layer, h∗ Multiperiod-ML∗ Static-ML∗

Adj. to mean, u {0.25, 0.50, 1.00} {0.25, 0.50, 1.00}

Adj. to variance, v {1, 2, 3} {1, 2, 3}

Adj. to t-cost, k {1, 2, 3} { 1
1
, 1

3
, 1

5
}

Back
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Outperformance is statistically significant

Table: Outperformance of One Method vs. Another

Portfolio-ML Multiperiod-ML∗ Static-ML∗ Portfolio Sort Markowitz-ML

Portfolio-ML 95% 96% 100% 100%

Multiperiod-ML∗ 5% 51% 100% 100%

Static-ML∗ 4% 49% 100% 100%

Portfolio Sort 0% 0% 0% 100%

Markowitz-ML 0% 0% 0% 0%

p-value of whether the average utility of the portfolio method in the row is greater than that in the column
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Example Portfolio Weights: Apple vs. Xerox

Market Portfolio Sort Markowitz−ML

Portfolio−ML Multiperiod−ML* Static−ML*

2016 2018 2020 2016 2018 2020 2016 2018 2020
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Correlations

Table: Portfolio Correlations

Portfolio-ML Multiperiod-ML∗ Static-ML∗ Portfolio Sort

Multiperiod-ML∗ 0.51

Static-ML∗ 0.55 0.80

Portfolio Sort 0.24 0.46 0.53

Markowitz-ML 0.17 0.50 0.59 0.56
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Portfolio Statistics over Time

Turnover

Leverage

Ex−ante Volatility

1980 1990 2000 2010 2020
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