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Abstract

According to conventional wisdom, RCTs and natural experiments represent especially credible

bases for econometric inference, facilitating evidence-based policymaking. We assess credibility

in dynamic settings, examining robustness of evidence derived from an exogenous first-stage

randomization applied to measure zero subjects. If government is able (unable) to alter policy

in response, experimental evidence is contaminated (uncontaminated) by ex post endogeneity :

Measured responses depend upon the government objective function into which the evidence

will be fed. Similarly, if government perceives experimental evidence as credible (non-credible),

the very act of observation changes (does not change) agent behavior. Thus, paradoxically, the

experimental evidence is contaminated if and only if government is willing and able to use it. We

show ex post endogeneity causes measured responses to hinge upon (unknown) parameters of

the governmental objective function, as well as prior beliefs regarding the causal parameters to

be estimated. Moreover, heterogeneous causal effect parameters induce endogenous belief het-

erogeneity. This link between beliefs and causal parameters makes it diffi cult, and potentially

impossible, to isolate the latter using experimental evidence. Finally, we show measured differ-

ences in RCTs are contaminated unless the investment cost function satisfies strong functional

form assumptions: zero fixed costs, equality of buy and sell prices, and quadratic adjustment

costs.

∗We thank seminar participants at Stanford, U.C. Berkeley, CMU, Boston College, LBS, Imperial College,

Washington-Seattle, Miami, and Nova-Lisbon. We also thank Antoinette Schoar, Manuel Adelino, and Taylor Begley

for early suggestions. Hennessy acknowledges funding from the ERC.

1



1 Introduction

Randomized controlled trials (RCTs) are viewed as the gold standard for empirical evidence in

medical science. Increasingly, this view is being carried over to the social sciences, with evidence from

RCTs and natural policy experiments (NPEs) treated by many as especially credible. For example,

Greenstone (2009) writes, “The gold standard for estimating the causal impact of a regulation is the

randomized trial.”In recent years, econometricians have shown considerable ingenuity in attempts

to exploit exogenous variation arising from NPEs, or in constructing their own RCTs. Angrist

and Pischke (2010) herald these methods as a “credibility revolution” arguing empirical evidence

delivered via quasi-randomization represents a credible stand-alone product. To wit, their influential

textbook (2009) states, “A principle that guides our discussion is that most of the estimators in

common use have a simple interpretation that is not heavily model dependent.”

Ingenuity notwithstanding, the credibility revolution has faced criticism for allegedly placing

means before ends, elevating clever identification over economic relevance. In response, empirical

researchers have redoubled their efforts to prove policy relevance. In fact, the perception of the

inherent credibility of econometric evidence derived from policy randomization has recently led to

a greater willingness to make policy decisions based directly upon them. For example, Dhaliwal

and Tulloch (2015) note the existence of an “increasing trend towards considering rigorous evidence

while making policy decisions.” Consistent with this view, the mission of J-PAL is to promote

“evidence-based policymaking.”In a similar vein, Greenstone (2009) calls for government agencies

“to move toward a culture of persistent regulatory experimentation” in which randomized regula-

tions are sunsetted so that impact analysis can inform the next regulatory decision. Duflo (2004)

argues, “Creating a culture in which rigorous randomized evaluations are promoted, encouraged, and

financed has the potential to revolutionize social policy during the 21st century, just as randomized

trials revolutionized medicine during the 20th.”

In this paper, we provide a careful articulation of an internal inconsistency at the heart of the

natural experiment research program as it relates to inference in dynamic settings. An example

illustrates our argument. We begin by noting that the two primary, and often exclusive, objectives

of contemporary empirical work are to convince the audience of “clean identification,” through

as good as random assignment, and policy relevance. Suppose then that after exhaustive debate,

which is the current norm in empirical due diligence, an empiricist is ultimately able to convince her

audience that her identification strategy is clean, offering a compelling demonstration based upon

her granular knowledge of institutional details that it was Nature herself that forced an exogenous

change in government policy and/or that Nature herself randomly assigned agents to treatment and

control groups. The empiricist is next challenged on policy-relevance. Here too, like today’s top



empiricists, she can rise to the challenge, demonstrating direct policy-relevance, e.g. her credible

evidence is actually being utilized by the EPA in its employment impact analysis or by J-PAL in

considering the scale-up of its pilot lending program. At this stage our empiricist is allowed to

declare victory, and lauded for her careful and important study.

What has gone unnoticed in this parable seminar is that there is a direct contradiction between

our empiricist’s claim of clean identification, on one hand, and her demonstration of direct policy

relevance on the other. After all, in establishing policy-relevance, our empiricist has also demon-

strated that the probability distribution of the policy variable is being altered by the econometric

evidence she is supplying. But if agents are making forward-looking decisions, e.g. accumulating

some stock variable, say human capital, they will have rationally changed their behavior during

the experiment in light of the anticipated influence of econometric analysis. In other words, the

anticipation of evidenced-based policymaking post-experiment will change what the econometrician

measures during the experiment. What implication does this have for causal inference?

We show that feedback from experimental evidence to policy-setting contaminates the once-clean

evidence. In particular, policy-relevant evidence from a seemingly ideal first-stage randomization

is contaminated by what we term ex post endogeneity. And, as we show, this is true even if, as in

our parable economy, agents are measure zero and have no strategic incentive to distort behavior

under observation. But notice, the contamination arising from alteration of the future policy variable

distribution necessarily vanishes if the government is unable to alter the policy variable in the future.

We thus have the following paradoxical situation: The experimental evidence is uncontaminated only

if the government is unable to use it. Similarly, the contamination vanishes if the government does

not view the experimental evidence as credible and so ignores it. We thus have another paradox:

The experimental evidence is uncontaminated only if the government does not deem it to be credible.

We show contamination from ex post endogeneity creates five challenges to inference. First,

rather than being stand-alone objects, policy-relevant experimental evidence must be interpreted

in light of the deep structural parameters of the governmental objective function into which the

evidence will be fed. That is, it is invalid to say, “Let us do the inference first, and think about

normative analysis later.”Rational agents will anticipate the normative analysis in any event, and

change their behavior during the experiment accordingly, so that the positive analysis must also

change accordingly.

Second, we show that experimental evidence must be interpreted in light of prior beliefs regard-

ing the causal parameters to be estimated, even if, as in our setting, the true parameter values will

actually be inferred based on the econometric estimation, so that the prior beliefs are abandoned

in policy-setting. Intuitively, since agents know the government will base its post-experiment policy

decisions on parameter estimates, prior beliefs regarding the probability distribution of these para-
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meters map directly to prior beliefs regarding the distribution of the policy variable post-experiment,

shaping the behavior of forward-looking agents during the experiment. As we show, an incorrect

stipulation of prior beliefs regarding the distribution of causal parameters will lead to incorrect

inference regarding the true value of these parameters.

Third, ex post endogeneity gives rise to John Henry and Hawthorne Effects: Both control and

treatment groups change their behavior under observation. And this is true despite our agents

being rational, anonymous, and measure zero. Intuitively, variation in the post-experiment policy

variable path, resulting from econometricians’observation, changes behavior during the experiment.

Fourth, such observer effects are not equalized across treatment and control groups unless the

underlying accumulation technology satisfies the type of “strong functional form assumptions”that

randomization advocates have tended to criticize in structural work (e.g. Hayashi (1982)): zero

fixed costs, equality of buy and sell prices, and quadratic adjustment costs. Absent these functional

form assumptions, treatment-control differences are contaminated by observer effects.

Finally, as we show, under rational expectations, endowed heterogeneous causal effect parame-

ters of agents naturally generate endogenous belief heterogeneity, which then amplify or attenuate

treatment response heterogeneity. The failure to make a correct accounting for the response amplifi-

cation/attenuation resulting from heterogeneous beliefs would then lead to faulty inference regarding

the magnitude of causal parameters. Worse still, in some cases this heterogeneous beliefs channel

can make it impossible to extract causal parameters from RCT and NPE evidence. Formally, this

is due to the fact that the heterogeneous beliefs channel can cause experimental moments, e.g. the

treatment-control difference, to be non-monotone in causal effect parameters. In other words, one

can observe the same experimental moment under both high and low values of the true causal effect

parameter, so the economic content of the experimental moment is not at all clear. This, along-

side our other findings, sharply contradicts the notion that experimental evidence has a “simple

interpretation.”

The intuition for the heterogeneous beliefs channel is as follows. Even under fully rational ex-

pectations with measure zero agents, those agents who benefit a great deal from an experimental

government program, via their endowed causal effect parameters, would attach a higher probability

to the government continuing the program based on the econometric evidence being fed into sub-

sequent governmental cost-benefit analysis. This would amplify their response to the experimental

program beyond what one would expect based on endowed causal effect parameters. Conversely,

agents who are greatly harmed by an experimental governmental regulation would attach a lower

probability to the government continuing the regulation based on the econometric evidence being

fed into subsequent governmental cost-benefit analysis. But this would attenuate their response to

the experimental regulation.
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Essential to the arguments above is that the agents exposed to the first-stage randomization

make decisions during the experiment (as opposed to crops, cells, or particles), and that those

decisions are functions of the future probability distribution of the policy variable the randomized

experiment will influence. Although the paper considers the canonical example of cross-sectional

real investment to fix ideas, our arguments apply to a broad range of decision problems involving the

accumulation of stock variables: savings, debt, health, human capital, offspring, financial structure,

or employees. Further, our arguments apply to many superficially “one-off” decisions once one

accounts for life-cycle considerations, e.g. labor supply. However, this is not to say that our critique

applies to all RCTs and NPEs. Essential for our arguments is that the agents being measured face

the endogenous government policy responses to the newly-created evidence. As we illustrate in

Section 2, by way of specific real-world examples, such settings are common. But we do not claim

they are universal. However, the problems we highlight will become increasingly relevant the tighter

the estimation-policy nexus, a nexus that many randomization advocates promote.

The rest of the paper is as follows. Section 2 reviews related literature. Section 3 presents a

simple model of the interaction between firms, governments, and econometricians. Section 4 uses

the model as the basis for discussing econometric inference in settings where firms face a common

exogenous policy shock (NPEs). Section 5 discusses observer effects in NPEs. Section 6 discusses

RCTs.

2 Related Literature

We begin this section by describing a variety of important real-world settings in which econometric

evidence derived from some form of randomization has been singled out as being particularly credible,

leading to the use of this evidence as an input in setting policy. As we will describe in detail in

the sections that follow, such feedback can contaminate once-clean evidence. The second subsection

moves to a discussion of related theoretical work.

2.1 Evidence-Based Policy-Making: Examples

To illustrate the relevance of our critique, consider first the area of environmental economics. In con-

junction with President Obama’s landmark Clean Policy Plan, the U.S. Environmental Protection

Agency was required to submit a detailed regulatory impact analysis. Reflecting the gold standard

status of evidence from quasi-randomization, the EPA’s analysis of employment impacts relies heav-

ily on evidence from quasi-natural experiments, with no mention of simple regression analysis or

structural estimation. For example, the EPA Report (2014) cites Greenstone (2002) who assessed

the economic impact of the Clean Air Amendments based on variation in regulation resulting from
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quasi-random changes in pollution attainment status across U.S. counties over time. Other papers

relying on this same source of quasi-random variation, and singled out in the EPA’s report, include

Berman and Bui (2001), Walker (2011), and Kahn and Mansur (2013). Walker (2011) highlights the

evidence-policy loop (2011) in writing, “My estimates from the most recent revisions are arguably

more applicable to current policy debates, and are particularly important in light of the EPA’s

recent proposal to further strengthen emissions standards.”

In the area of health economics, evidence from random assignment has also taken pride of place

in the policy arena. Here two studies have been most influential, the RAND Health Insurance

Experiment and the Oregon Health Study. Running from 1974 to 1981, the RAND experiment

randomly assigned households to health insurance plans with varying levels of cost sharing, allowing

for estimation of health and expenditure impacts. Aron-Dine, Einav and Finkelstein (2013) write,

“More than three decades later, the RAND results are still widely held to be the gold standard of

evidence for predicting the likely impact of health insurance reforms... such estimates have enormous

influence as federal and state policymakers consider potential policy interventions to reduce spending

on health care.”

The Oregon Health Study involves expanded Medicaid access determined via lottery conducted

by the state’s government in 2008. Allen, Baicker, Finkelstein, Taubman and Wright (2014) link

the Oregon Study with the intense debate over President Obama’s health reforms, writing:

One of the primary components of the recently enacted health reform law, the Pa-

tient Protection and Affordable Care Act of 2010, is a major expansion of Medicaid,

particularly to low income adults. The probable impact of such an expansion on the

newly covered population is of obvious interest. This article describes an ongoing Med-

icaid expansion experiment in Oregon that provides a unique opportunity to investigate

its impact through randomized evaluation.

In the area of development economics, the type of randomized evidence-based policymaking

we consider is common. For example, as described by Duflo, Glennerster and Kremer (2006), a

prototypical J-PAL study consists in working in close partnership with a sponsoring institution to

conduct a pilot program RCT, followed by a broader application of the policy to the treatment,

control and other groups during a “scale-up”stage if the pilot was deemed successful. Writing for

J-PAL, Dhaliwal and Tulloch describe close partnerships between experimenters and those setting

long-term policy as creating a “virtuous feedback loop.” As an example, in describing Mexico’s

PROGRESA program, they write, “The strength of the evidence coming from these evaluations, as

well as the immense popular support the program enjoyed, likely contributed to make it politically

infeasible to discontinue the program, and it continues under the new name Opportunidades.”
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The U.S. Securities and Exchange Commission (SEC) has begun to rely heavily on evidence

from random assignment in the policy-setting process. For example, in 2005 and 2006 the SEC

temporarily removed the restriction of short-selling to up-ticks on a matched sample of one-third of

the Russell 3000 stocks. The evidence was analyzed internally by the Offi ce of Economic Analysis

staff on the part of the SEC, with the data also being released publicly facilitating academic study,

e.g. Boehmer, Jones and Zhang (2008). Based on the evidence, the SEC repealed the up-tick rule

on all stocks with some pull-back in financial stocks during the 2008 financial crisis. Describing

the experiment, the SEC’s former Chief Economist Chester Spatt (2011) writes, “I view the very

limited nature of the eventual pull-back on what had become such a politically sensitive rule as a

reflection of the strength of the original evidence that the SEC staff generated and upon which the

repeal had been based.”

As a final real-world example of feedback from econometric estimation to policy-setting, consider

that during her term as Chairman of the Council of Economic Advisers (2009-2010), Christina Romer

was involved in intense debates regarding the likely impact of proposed fiscal stimulus. At the same

time, Romer and Romer (2010) published their influential paper assessing the impact of tax changes

on economic activity, a study relying on exogenous tax changes identified from legislative narratives.

It is not implausible to believe that Romer, in her policy-making role, was heavily influenced by

her own econometric evidence, and discounted evidence coming from less credible sources. Romer

and Romer (2010) write, “There is pervasive omitted variable bias in any regression of output on

an aggregate measure of tax changes... This paper suggests one way of dealing with this omitted

variable bias.”

2.2 Related Theoretical Work

The issues we raise are related to, but distinct from, the econometric critique made by Lucas (1976).

Writing for The New Palgrave Dictionary of Economics, Lars Ljungqvist (2008) offers the following

definition of the Lucas Critique:

It criticizes using estimated statistical relationships from past data to forecast effects

of adopting a new policy, because the estimated coeffi cients are not invariant but will

change along with agents’decision rules in response to a new policy. A classic example

of this fallacy was the erroneous inference that a regression of inflation on unemployment

(the Phillips curve) represented a structural trade-off for policy to exploit.

Thus, the argument of Lucas (1976) is that future regression coeffi cients and decision rules will

be different from those estimated presently if the government policy rule changes in the future.
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Our argument does not concern changes in future regression coeffi cients. Rather, our argument

is that there will be changes in what is measured presently (e.g. the measured control-treatment

difference in an RCT) in light of expectations regarding whether and how the associated econometric

evidence, causal parameter estimates, will be used in subsequent policy decisions. Moreover, in the

argument of Lucas (1976), econometricians sit outside the model in that their estimates are not

part of the information set of agents inside the model. In contrast, critical to our argument is that

econometricians sit inside the model, with our focus being on the feedback between their estimates

and government policymaking. This feedback is the root cause of the novel biases and paradox we

illustrate, upon which Lucas (1976) is silent.

The macro-econometric literature has focused on the implications of rational expectations for

the interpretation of vector autoregressions. Sargent (1971, 1973, 1977) and Taylor (1979) showed

that rational expectations implies restrictions on distributed lags of vector autoregressions. Sims

(1982) and Sargent (1984) pointed to an asymmetry in rational expectations econometrics practice in

postulating optimizing behavior on the part of households and firms while assuming non-optimizing

behavior by the government. In our paper, we discuss the correct interpretation of experimental

data assuming all agents, including the government, behave optimally and make optimal use of the

information available to them.

This paper is also related to that of Hennessy and Strebulaev (2015) who analyze the meaning

of econometric evidence derived from an economy hard-wired with an infinite sequence of exogenous

natural policy experiments, with zero endogeneity bias at any stage. In contrast, we here consider

an economy with only two policy changes. The first policy change arises from an exogenous natural

experiment. The second policy change is an optimal response to evidence derived from the first. It

is this second-stage governmental policy optimization that is the source of the biases and paradox

we discuss.

Our critique of the random assignment literature is related to, but distinct from the critique

made by Heckman (1997) who argues that individuals and households can be expected to endoge-

nously undermine random assignment when beneficial to do so. In our laboratory economies, firms

are incapable of avoiding the experimental policy treatment. Heckman (1997) and Deaton (2010)

emphasize that with heterogeneity the probability limit of instrumental variables estimators can

depend on the choice of instrument. In our model, there is no instrumentation.

A Hawthorne Effect is said to arise if treated agents change their behavior under observation (see

Levitt and List (2011) and Zwane et al. (2011)). A John Henry Effect is said to arise if control group

agents change their behavior under observation. These observer effects are commonly discussed in

the behavioral and organization literatures. These literatures have postulated a range of behavioral

rationales for such effects such as self-consciousness, approval-seeking, spite, or a desire to influence
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study outcomes. Importantly, our model abstracts from such effects since firms are rational, measure

zero, and anonymous.

Acemoglu (2010) argues that general equilibrium effects can undermine the external validity

of (small-scale) experimental evidence, with large-scale policy changes potentially leading to factor

substitution and/or endogenous changes in prices and technology. All such effects are shut off in our

model. Acemoglu also points out that inherent differences in technology or political institutions can

limit external validity. These effects are also shut off in our model as we consider a single parable

economy.

3 The Model

We begin by contrasting inference in two economies endowed with identical natural experiments and

technologies but differing in how evidence is used. In the Endogenous Policy Economy, empirical

evidence is used to select an optimal long-term policy. In the Exogenous Policy Economy, evidence

is irrelevant because the government is powerless to change the policy variable.

The underlying investment model is deliberately simple, following, say, Dixit and Pindyck (1994).

However, understanding the econometric issues requires a careful articulation of the respective

information sets of all agents.

3.1 Technology

Time is continuous and the horizon infinite. All agents are risk-neutral and share a common discount

rate r > 0. There is a measure one continuum of anonymous firms. The fact that firms are atomistic

ensures that, by construction, no firm has any incentive to change its behavior with the goal of

influencing econometric inference, and with it, government policy.

We describe the decision problem of an arbitrary firm, omitting time and firm identifiers where

obvious to conserve notation. The law of motion for a firm’s capital stock is:

dkt = (it − δkt)dt. (1)

The variable i denotes gross investment and δ ≥ 0 is the depreciation rate.

The literature on dynamic accumulation problems, e.g. Abel and Eberly (1994, 1997), has

considered complexities arising from fixed costs and irreversibilities. Since such complexities are

extraneous to our main arguments, we start by assuming firms face the following convex investment

cost function with the goal of keeping the algebra simple:

ψ(i) ≡ γiν/(ν−1). (2)
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We assume the cost function parameters satisfy γ > 0 and ν > 1. Imposing ν > 1 ensures convexity

of the investment cost function and unique interior optimal policies. As shown below, in this setting

one obtains simple closed-form expressions for the empirical outcome variable i for arbitrary ν > 1.

The firm’s value function is of only peripheral interest, so we relegate solutions for the value function

to the appendix, confining attention there to integer values of ν, as in Abel and Eberly (1997).

Firm cash-flow at time t is given by:

Ω(kt, xt, πt, it, b) ≡ (xt + πtb)kt − γiν/(ν−1)t . (3)

The profit factor x in the cash-flow equation is a positive geometric Brownian motion with the

following law of motion:

dxt = µxtdt+ σxtdwt. (4)

The variable w denotes an independent Wiener process. To ensure bounded firm value, one must

assume the discount rate satisfies r > µν + 1
2σ

2ν(ν − 1).

We shall think of firms as facing the same x process. This assumption is not necessary, but

serves the expositional purpose of generating the type of shocks to which a real-world government

might be expected to respond. Analogous sources of ex ante endogeneity bias are generally of

paramount concern to econometricians, garnering enormous attention. Anticipating, this and other

standard forms of ex ante endogeneity bias will be ruled out by construction so that the experiments

considered are optically ideal.

The term πtb entering cash-flow allows us to capture government policy in a very simple manner.

The variable π represents a government-stipulated pollution cap. The variable b ≥ 0 measures the

benefit to polluting, e.g. cost savings. The benefit to polluting is specific to the firm’s industry. Each

firm operates in one ofM ≥ 2 industries. Econometricians know which industry each firm falls into,

but do not know the marginal benefit, call it bm, firms in industry m derive from a higher pollution

cap. More generally, we could equally well assume that each firm falls into one of a large yet finite

number of categories, e.g. the category of textile manufacturers in Kentucky with operating assets

above the industry median, say. The key assumption is that econometricians can observe the firm’s

category, with the category determining the pollution benefit.

The industry-specific pollution benefits are determined as i.i.d. draws at date 0. The pollution

benefit for each industry is drawn from the interval [0, b] with a strictly probability density f on this

support, having a corresponding cumulative distribution F that is twice continuously differentiable,

with F (0) = 0. Tildes denote random variables and bold-type denotes vectors. The realization of

the random vector b̃, is denoted b. Econometricians and the government will want to infer the

vector of industry-level pollution benefit parameters b in order to inform decisions regarding the
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optimal pollution cap post-experiment. In this context, we shall speak of F as capturing the prior

beliefs of all agents.

3.2 Timing

Firms invest optimally each instant. It is convenient to split the model into three Stages S ∈
{P,E, I}. Maximum allowed pollution in each stage, denoted πS , is either π or π. Stage P is the

Pre-Experiment Stage. It is followed by Stage E, the Experiment Stage, which is followed by Stage

I, the Implementation Stage. As we show, within each stage firms face a simple time-homogeneous

investment problem.

During Stage P , all firms face the same economy-wide pollution cap πP . This can be thought

of as the initial endowed technology in the economy. An exogenous natural experiment will arrive

at date τE . This date is an independent random variable. The transition rate into the Experiment

Stage is λE > 0. If follows that at any time prior to the transition, the expected remaining duration

of Stage P is λ−1E .

During the Experiment Stage, Nature will randomly assign a fraction θ of firms to deregulated

status, with πE = π, while remaining firms are assigned to regulated status, with πE = π. Two

types of experiments are considered. In a Natural Policy Experiment (NPE below), all firms face

the same exogenous regulatory policy πE 6= πP during the experimental period. Thus, in our NPEs,

the model parameter θ will be set to either 0 or 1. In a Randomized Controlled Trial (RCT below),

treatment and control groups face different regulations during the experiment. Thus, to capture an

RCT we will choose the parameter θ ∈ (0, 1). For example, in our RCTs featuring an equal measure

of firms in treatment and control groups, the parameter θ will be set to 1/2.

“Unexpected”experiments are accommodated by setting λE to an arbitrarily small number. This

would have no effect on treatment and control group differences in an RCT. For NPEs, unexpected

experiments feature larger responses at the start of the experiment. This has no effect on the

substance of our arguments, as shown below.

The Implementation Stage I will arrive at date τ I . This date is an independent random variable

given τE . The transition rate into the Implementation Stage is λI > 0. Thus, at any instant prior

to the transition, the expected remaining duration of Stage E is λ−1I .

At the very start of Stage I, econometricians have the opportunity to observe some empirical

evidence.12 In the RCT, econometricians can look back and measure the difference between the

investment of treatment and control groups, industry by industry, at an arbitrary point in time

during the experiment. In the NPE, econometricians can look back and measure the change in

1Observation during Stage E adds an uninteresting limbo phase where πI is inferred, with πE still in effect.
2Letting firms make the same observation as econometricians has no effect.
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industry-level investment that took place at the start of the experiment. Since time is continuous

and x path-continuous, measuring investment changes over the instants just before and just after

experiment initiation obviates the need to control for changes in economic conditions (the state

variable x in our model). As shown below, the parameter vector of interest here b, can gener-

ally be correctly inferred from these standard empirical statistics, but only if the econometrician

understands the interplay between evidence, policy, and firm-level expectations.

The following assumption is satisfied by the stochastic policy process facing each firm j at any

point in time at which the experimental measurement may take place.

Assumption 1 (Independence): π̃jt ⊥ {b̃, x̃t} ∀ j and t ∈ [0, τ I).

By construction, independence of the policy process rules out the standard forms of endogeneity

bias about which empiricists would be expected to debate almost exclusively in a real-world seminar.

First, random assignment rules out selection by firms or the government based on unobservables

(b), e.g. heavy polluters choosing jurisdictions less likely to face experimental regulation. Second,

econometricians might also be concerned that the government they observe is only willing to impose

the novel regulation (πE) because it knows that the true parameter configuration is benign, or has

favorable priors. However, in the economy considered, the government does not know the parameter

vector b, and the policy variable is independent of the random vector b̃. Finally, we recall that

in equation (4) the Wiener process wt was assumed to be independent, eliminating concern that

experimental regulation is correlated with the underlying profitability state (xt).

Since we will be evaluating the difference-in-difference estimator, it is worth noting the our

experiments will have very good optics. For example, it follows from Assumption 1 (Independence)

and Ito’s lemma that, within each industry, the investment of treatment and control groups will

exhibit identical stochastic trends (and levels, actually) prior to the experiment.3 In particular, for

all firms j within a given industry m we have:

Common Trends: dijt =

[
µxti

P
x (xt, bm) +

1

2
iPxx(xt, bm)σ2x2t

]
dt+

1

2
σ2x2t i

P
x (xt, bm)dwt ∀ j and t < τE .

(5)

The Pre-Experiment Stage investment policy function iP has an analytical solution derived below.

During the Implementation Stage, a long-term regulatory policy will be implemented perma-

nently. In the Exogenous Policy Economy, πI will be set to some known technologically pre-

determined value πEXI and the government is powerless to alter this fact. In the Endogenous

Policy Economy, the government will, with the help of its sophisticated econometrician, infer the

parameter vector b and then implement an optimal regulatory policy in light of this information.

3 In fact, the trend is common across industries given the investment function.
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3.3 Firm-Level Policy Beliefs

In the Endogenous Policy Economy, once the Implementation Stage is reached, the government will

put into place an optimal policy according to its objective function Θ. The objective function is

common knowledge to all agents at date 0. To keep the math simple, we’ll assume the government

will set policy based on the average industry-level pollution benefit. We’ll consider one of two

possibilities. The government can be Pro-Environment or it can be Pro-Investment. Respectively,

such governments have the following objective functions.

Pro-Environment: Θ(π,b) ≡ π
[
b∗ − 1

M

M∑
m=1

bm

]
. (6)

Pro-Investment : Θ(π,b) ≡ π
[

1

M

M∑
m=1

bm − b∗
]
.

In the preceding equations b∗ > 0 is a cutoff for the average pollution benefit. A Pro-Investment

government will deregulate if the average of pollution benefits accruing to industry is suffi ciently

high, since the post-experiment investment of each firm j is increasing in its benefit parameter bj . A

Pro-Environment government will instead regulate if the ability to pollute is suffi ciently valuable to

firms, since deregulation would then lead to a large increase in firm investment in polluting capital

stocks, investment this government type wants to deter.

We consider Rational Expectations Equilibria in which the government is able to infer b based

on the econometric evidence. Under endogenous policies, the government will implement:

π∗I(b) ∈ arg max
π∈{π,π}

Θ(π,b). (7)

We will impose the following assumption which ensures that econometric inference actually serves

some real purpose in the Endogenous Policy Economy.

Evidence Policy-Relevant: b∗ < b. (8)

Notice, if this condition were not satisfied then the government would never change its policy

regardless of the econometric evidence. The Pro-Investment government would never deregulate

and the Pro-Environment government would always deregulate.

We can then define an indicator for the optimality of deregulation given the (correctly) inferred

parameter vector:

π ∈ arg max
π∈{π,π}

Θ(π,b)⇔ χ(b) = 1. (9)
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The policy beliefs for a firm in industry m are summarized by the following belief-function which

measures their assessment of the probability of deregulation being implemented post-experiment:

β(b) ≡
b∫
0

...

b∫
0

b∫
0

...

b∫
0

[
[χ(b1, ..., bm−1, b, bm+1, ..., bM )]

[F (db1)...F (dbm−1)F (dbm+1)...F (dbM )

]
. (10)

In the case of a Pro-Investment (Pro-Environment) government, it is apparent that the indicator

function in the preceding equation is non-decreasing (non-increasing) in the own-industry benefit

parameter b. Further, from equation (8) it follows that the final government policy rule is always

uncertain and that the inferred parameter for each industry influences marginal decisions. We thus

have the following lemma.

Lemma 1 If the government is Pro-Investment (Pro-Environment) and free to implement its op-

timal policy, each firm j’s assessed probability of deregulation post-experiment, or belief function, is

weakly increasing (decreasing) in its own causal parameter bj, and strictly so on a set of positive

measure. Firms have heterogeneous post-experiment policy beliefs on a set of positive measure.

To close this subsection, it will be useful to consider the simplest possible case of two industries.

Here the belief function takes the form:

Pro-Environment : β(b) = F (2b∗ − b)⇒ β′(b) = −f(2b∗ − b) ≤ 0 (11)

Pro-Investment : β(b) = 1− F (2b∗ − b)⇒ β′(b) = f(2b∗ − b) ≥ 0.

It is apparent from the preceding equations that, consistent with the preceding lemma, exogenous

heterogeneity in the realized treatment response parameters (b1, b2) results in endogenous hetero-

geneity in firm-level expectations regarding policy decisions post-experiment. Further, it is apparent

that the shape of the belief function is dictated by prior beliefs regarding the parameters to be es-

timated (F ), as well as the government objective function parameter b∗.

These effects are illustrated in Figure 1 which plots realized beliefs as a function of the realized

own-industry pollution benefit parameter. The figure assumes F is the uniform distribution on

[0, 1] and plots beliefs under both Pro-Environment and Pro-Investment Governments. Consistent

with the preceding lemma, beliefs are decreasing under the former and increasing under the latter.

The figure considers governments applying low (b∗ = .75) and high (b∗ = .85) values for the cutoff

parameter. Apparently, changes in this parameter of the government objective lead to endogenous

shifts in belief functions.

It is worth closing this subsection by noting that it would be incorrect to assert that “we simply

have to make the right assumption about the probability of deregulation.”To see this, note first
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that there is no common policy expectation. Second, note that making correct assumptions about

each agents’policy expectation, a priori, is tantamount to assuming the econometrician knows the

very information (b) that the econometric estimation is intended to recover.

Finally, while the modeling details might differ depending on context, we would argue that the

heterogeneous expectations effect derived here might well be expected to be ubiquitous in settings

with evidence-based policymaking: A measure zero firm benefits (suffers) a great deal from some

experimental policy, but knows its technology is correlated with those of other firms, so expects

that the government, capable of correct statistical inference, is more likely to continue or scale-up

(discontinue or scale-down) the policy. As we show, the failure to account for this endogenous

heterogeneous beliefs channel leads to incorrect inference regarding causal parameters.

3.4 Investment Decisions

A formal solution using optimal control is provided in the appendix, with analytical solutions derived

for integer values of ν. This subsection confines attention to characterizing the empirical outcome

variable, firm investment. Despite considering an infinite horizon and continuous-time, the model

solution boils down to three stages and can be solved as readily as a three period model.

We begin by focusing on the Endogenous Policy Economy. At each instant it is optimal to invest

up to the point that the shadow value of a unit of installed capital, call it q, is just equal to the

marginal investment cost. We can therefore define the following function i∗ mapping the shadow

value to optimal investment:

q = ψ′(i∗)⇒ i∗(q) ≡
(
ν − 1

νγ

)ν−1
qν−1. (12)

Optimal investment is increasing in q, with the q-sensitivity of investment varying with the para-

meters of the investment cost function, γ and ν.

Accounting for the fact that capital depreciates at rate δ, the discounted value derived from one

unit of capital at its installation date, call this date τ , is given by:4

q(xτ , b) =

∞∫
0

e−rtEτ
{
e−δtΩk(kτ+t, xτ+t, πτ+t, iτ+t, b)

}
dt (13)

=

∞∫
0

e−(r+δ)tEτ {xτ+t + bπτ+t} dt.

Installed capital is valued by applying an effective discount rate of r + δ to the marginal product

from a unit of capital which, in turn, is equal to the profit factor x plus the pollution benefit bπ.
4For a derivation, see the appendix or Abel and Eberly (1994, 1997).

14



Using the Gordon Growth Formula to value the claim to x, which grows at rate µ, it follows

that the shadow value of capital at each stage S ∈ {P,E, I} takes the form:

qS(x, b) =
x

r + δ − µ + ηS(b). (14)

Above, ηS(b) represents the present value future pollution benefits, which can be derived using

backward-induction.

During the Implementation Stage, the pollution benefit represents a constant perpetuity. Ap-

plying the effective discount rate r + δ, we have:

ηI(b) =
πIb

r + δ
. (15)

Throughout, we let upper (lower) bars denote values and policies if during the current stage π = π

(π = π). We have:

qI(x, b) =
x

r + δ − µ +
πb

r + δ
(16)

qI(x, b) =
x

r + δ − µ +
πb

r + δ

Consider next the value of future pollution benefits evaluated during the Experiment Stage. The

expected rate of return must equal the effective discount rate r+ δ. The return here consists of the

flow of pollution benefits plus the capital gain accruing if there is a transition to the Implementation

Stage. We have the following equilibrium condition:

(r + δ)ηE(b) = πEb+ λI
[
β(b)ηI(b) + (1− β(b))ηI(b)− ηE(b)

]
(17)

⇒ ηE(b) =

[
(r + δ)πE + λI [β(b)π + (1− β(b))π]

(r + δ)(r + δ + λI)

]
b.

Therefore, the shadow value of capital during the Experiment Stage is:

qE(x, b) =
x

r + δ − µ +

[
π + λI

(
β(b)π + (1− β(b))π

r + δ

)][
b

r + δ + λI

]
(18)

qE(x, b) =
x

r + δ − µ +

[
π + λI

(
β(b)π + (1− β(b))π

r + δ

)][
b

r + δ + λI

]
.

Consider finally the value of future pollution benefits evaluated during the Pre-Experiment Stage.

The return here consists of the flow of pollution benefits plus the capital gain accruing if there is

a transition to the Experiment Stage. Accounting for the fact that the firm faces πE = π with

probability θ, we have the following equilibrium condition:

(r + δ)ηP (b) = πP b+ λE
[
θηE(b) + (1− θ)ηE(b)− ηP (b)

]
(19)

⇒ ηP (b) =

[
πP

r + δ + λE
+ λE

(
(r + δ)(θπ + (1− θ)π) + λI (β(b)π + (1− β(b))π)

(r + δ)(r + δ + λI)(r + δ + λE)

)]
b.
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Therefore, the shadow value of capital during the Pre-Experiment Stage is:

qP (x, b) =
x

r + δ − µ +

[
π

r + δ + λE
+ λE

(
(r + δ)(θπ + (1− θ)π) + λI (β(b)π + (1− β(b))π)

(r + δ)(r + δ + λI)(r + δ + λE)

)]
b(20)

qP (x, b) =
x

r + δ − µ +

[
π

r + δ + λE
+ λE

(
(r + δ)(θπ + (1− θ)π) + λI (β(b)π + (1− β(b))π)

(r + δ)(r + δ + λI)(r + δ + λE)

)]
b.

Consider next the Exogenous Policy Economy. The only necessary modification to the preceding

analysis is that here beliefs regarding πI must coincide with the known pre-determined value πEXI .

Thus, one must simply introduce the following substitution into the Endogenous Policy Economy

shadow value solutions:

β(b)π + (1− β(b))π → πEXI . (21)

In other words, in the Exogenous Policy Economy beliefs are homogeneous, invariant to the own-

industry pollution benefit, and extreme in that the belief β is either 0 or 1.

Finally, before closing this subsection it is worth pinning down the causal effect (CE) parameters

in this economy. As argued by Heckman (2000), a causal effect is just a Marshallian comparative

static. Recall, in our economy, the government is interested in predicting how each industry’s

investment will vary with the pollution cap it puts into place at the start of the Implementation

Stage. For firms in industry m, the causal effect is:

CEm ≡
∂iI(x, bm;π)

∂π
=
∂qI(x, bm;π)

∂π

di∗

dq
=

(
bm
r + δ

)
(ν − 1)

(
ν − 1

νγ

)ν−1
[qI(x, bm;π)]ν−2. (22)

It follows from the preceding equation that in order for the government to correctly predict the

response to its policy decision, it must correctly infer the vector b of causal parameters.

4 Inference in Natural Policy Experiments

This section considers the following NPE. During the Pre-Experiment Stage, there is regulation,

with πP = π. During the Experiment Stage all firms face deregulation, with πE = π. In the

Exogenous Policy Economy, the policy variable remains fixed at πEXI = π after the experiment and

the government is powerless to alter this fact. In the Endogenous Policy Economy, the government’s

econometrician correctly infers the vector b based on industry-specific responses. The government

then implements its optimal policy. In this setting, we evaluate inference by an econometrician

sitting outside the government, say an academic economist.

For the purpose of the numerical examples, we assume there are two industries, with their

pollution benefits being i.i.d. draws from the uniform distribution on [0, 1].We begin by considering

the Endogenous Policy Economy under a Pro-Environment government that will deregulate only if
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the average pollution benefit falls below the cutoff value b∗ =0.60. We’ll consider here relatively long

expected policy shock durations of 6.7 years, as would tend to be true for economy-wide legislation.

The following parameter values are assumed: r = .05; δ = .10; µ = 0; λE = .15; λI = .15; π = 1;

π = 0; x = 1; γ = 1; and ν = 2. It is worth noting that the numerical illustrations assume adjustment

costs are quadratic (ν = 2) which implies optimal investment is linear in q. Although this parametric

assumption is almost certainly not correct empirically, it allows us to most clearly illustrate the role

of belief heterogeneity in NPEs.

Consider now Figure 2. On the horizontal axis is the true pollution benefit for one of the

two industries, a parameter our econometrician wants to infer. On the vertical axis is the change

in investment at the start of the experiment. Consider the contrast between the response in the

Endogenous versus Exogenous policy economies. In both cases, there is zero investment response

if b = 0. After all, if profits are invariant to the pollution cap, investment will be unresponsive

to the cap. Further, we see the investment response is monotonically increasing in b. Since here

the measured response is monotonic in the parameter, the econometrician will be able to correctly

infer its value provided she accounts for the interplay between estimation, expectations, and policy-

setting.

Suppose our academic econometrician works in the Endogenous Policy Economy. If the econo-

metrician is sophisticated, she will anticipate the future utilization of econometric evidence as a

policy input and use the solid curve in performing her own inference, resulting in correct estimation

of b. If she is naïve, the policy input role is ignored and she instead uses the dashed line to perform

inference. It is apparent the naïve econometrician will understate pollution benefits. For example,

if the realized b = 1, the observed investment response will be 1. However, working along the dashed

line the naïve econometrician will infer the pollution benefit is only b = .60.

Intuitively, in the Endogenous Policy Economy, the government has the power to reverse Na-

ture’s course and re-impose regulation based on the experimental data. Consequently, the positive

investment response to experimental deregulation will be less dramatic. This is an intuitive effect.

But note, the wedge resulting from this expectations effect is not homogeneous. Rather, it is appar-

ent that the wedge grows ever larger as b grows larger. As shown formally below, this non-linearity

is due to the fact that a higher industry-level pollution benefit causes the firm to rationally infer

a lower likelihood that the Pro-Environment government will deregulate long-term, i.e. β′ ≤ 0.

Heterogeneous causal parameters lead to heterogeneous beliefs, affecting what is measured. And

here the failure to account for the compression of treatment responses, across b values, resulting

from endogenous belief heterogeneity, apparently leads to an understatement of the true value of

the causal parameter.

Another issue of concern to econometricians is that policy endogeneity limits external validity.
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For example, if a government happened to know up-front (t = 0), that b in its jurisdiction is

atypically low, it would be more willing to introduce the deregulation considered. Assumption 1

rules out this form of ex ante endogeneity. However, ex post endogeneity still leads to similar

external validity challenges. For example, instead of happening to know b is low, suppose instead

there is an otherwise equivalent economy having more favorable priors (F ), with F now being a

triangular distribution placing higher weight on lower b values. As shown in the dotted line, for any

given value of the parameter b, the positive investment reaction would actually be stronger in this

Positive Priors Economy. Notice, prior beliefs influence measured responses here even though, by

construction, the government abandons its priors when setting long-term policy, since it correctly

infers the true parameter values. Obviously, a correct stipulation of priors is necessary to correctly

map the observed investment reaction back to the true parameter value.

As a final example of issues that arise here, suppose government policy is endogenous, but with

the government applying a lower cutoff of b∗ =0.50. The positive investment response at the start of

the experiment will be weaker than in an otherwise identical economy with a higher cutoff. Clearly,

correct inference of the causal parameter is predicated upon a correct stipulation of the parameters

of the government objective function into which the parameter estimates will be fed.

We can easily understand the inference problem here analytically. The measured change in

investment at the start of the experiment (πE = π), call it the deregulation response function (R),

is:

R(b) ≡ i∗[qE(x, b)]− i∗[qP (x, b)] (23)

=

(
ν − 1

νγ

)ν−1 [(
qE(x, b)

)ν−1 − (qP (x, b)
)ν−1]

where the shadow values (q) are as shown in equations (18) and (20). Since these shadow values

depend upon beliefs, as captured by the presence of the β(b) terms, it is apparent that any change

in economic environment (e.g. F and b∗) leading to changes in belief functions regarding long-term

policy shifts the regulatory response function.

To illustrate, consider then the special case of quadratic investment costs (ν = 2). Here the

deregulation response function is:

R(b) =

(
1

2γ

)[
(r + δ)(π − π) + λI [β(b)π + (1− β(b))π − π]

(r + δ + λI)(r + δ + λE)

]
b

⇒ R′(b) =

(
1

2γ

) (r+δ)(π−π)+λI [β(b)π+(1−β(b))π−π]
(r+δ+λI)(r+δ+λE)

+β′(b) λI(π−π)b
(r+δ+λI)(r+δ+λE)

 .
The preceding equation makes clear that a correct stipulation of the belief function β(·), which
essentially captures endogenous belief heterogeneity, is required to correctly infer the true parameter
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b based on an observed investment response. In turn, a correct stipulation of the belief function

requires a correct stipulation of priors (F ) and parameters of the government’s objective function

(here b∗). It is apparent that the response function is linear only if beliefs are constant, as was the

case in the Exogenous Policy Economy. Finally, it is apparent from examining the derivative of

the response function that the heterogeneous beliefs channel here attenuates (amplifies) investment

response heterogeneity, across the different possible endowed b values, under a Pro-Environment

(Pro-Investment) government.

Finally, if one were to compare the regulation response across economies with endogenous versus

exogenous policies, the implied difference is:

R(b)
Endogenous

− R(b)
Exogenous

=

(
λI
2γ

)[
β(b)π + (1− β(b))π − πEXI

(r + δ + λI)(r + δ + λE)

]
b. (24)

It follows from equation (24) that there is necessarily a wedge between the experiment response

functions in the Exogenous Policy and Endogenous Policy economies.

The following proposition summarizes the results from this section.

Proposition 1 The deregulation response function (R) for Natural Policy Experiments differs ac-

cording to whether the econometric evidence is relevant, due to endogenous long-term policy, or ir-

relevant, due to exogenous long-term policy. Across economies with endogenous long-term policies,

deregulation response functions are equal if and only if they share a common government objec-

tive function post-experiment and common prior beliefs (F ) regarding the distribution governing the

parameters to be estimated. Endogenous belief heterogeneity amplifies (attenuates) cross-sectional

deregulation investment response heterogeneity under a Pro-Investment (Pro-Environment) govern-

ment.

5 Observer Effects in Natural Policy Experiments

This section utilizes the model to examine the link between the perceived credibility of evidence

from an NPE and the nature of the evidence itself.

Consider two economies with the same technologies as described in the preceding section, with

the two governments sharing the same objective function. Further, assume the same sequence of

events as in the previous section. However, assume now that both governments have the ability

to choose long-term policy, πI ∈ {π, π}, at their discretion. The two economies differ however in
respective governmental perceptions of the credibility of experimental evidence. In Economy NC, the

government views such evidence as non-credible. In Economy C, the government views experimental
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evidence as credible. Finally, assume that observation and measurement of firm behavior may or

may not be feasible, and that all agents know whether or not observation is feasible.

In Economy NC, long-term policy will be invariant to whether or not observation occurs. If

observation occurs, the government ignores the evidence and implements the policy optimal under

prior beliefs, call it π∗IP . And if no observation occurs, the government has no choice but to rely on

its priors and so again implements π∗IP . For example, in our previous example, the Pro-Environment

government would deregulate given its prior beliefs since the expected benefit is one-half and the

cutoff value for deregulation was 0.60. Clearly, firms in Economy NC will base their investment on

the same conjectured long-term policy regardless of whether or not observation occurs. There is no

Hawthorne Effect.

In contrast, in Economy C, long-term government policy is contingent upon whether or not

observation occurs. If no observation occurs, the government has no choice but to rely on priors

and so implements πI = π∗IP . If observation occurs, the government views the econometric evidence

as credible and uses it to infer the parameter vector b. Firms then rationally anticipate the imple-

mentation of π∗I(b) and thus form own-sector beliefs β(b). As shown next, a Hawthorne Effect then

arises from the change in the probability distribution of the policy variable resulting from the act

of observation.

The Hawthorne Effect in Economy C can be expressed in terms of the shadow value of capital.

In Economy C, firms behave just as they do in the Exogenous Policy Economy if they are not being

observed treating πEXI = π∗IP . In contrast, under observation they behave just as in the Endogenous

Policy Economy, anticipating implementation of π∗I(b). It follows that in Economy C, the jump in

the shadow value of capital, and hence investment, at the onset regulation depends upon whether

the firms are being observed or not. In particular, under observation we have the following jump in

the shadow value of capital at the inception of the experimental deregulation:

[
qE(x, b)− qP (x, b)

]
Observed

=
[
qE(x, b)− qP (x, b)

]
Not Observed

+
λI [β(b)π + (1− β(b))π − π∗IP ]b

(r + δ + λI)(r + δ + λE)
.

Hawthorne Effect

(25)

We thus have the following proposition.

Proposition 2 If the government views the Natural Policy Experiment as credible (non-credible),

the outcome variable, the change in investment during the experimental treatment period, is (not)

contaminated by a Hawthorne Effect.

To illustrate, Figure 3 plots the experimental response function in Economy C, where NPEs are

viewed as a credible source of information. The solid line depicts the response function without ob-

servation and the dashed line depicts the response function with observation. Without observation,
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the government sets long-term policy based upon prior beliefs and deregulates with probability one

(π∗IP = π). With observation, sophisticated analysis allows the government to infer b and so it

implements a contingent optimal policy, with πI = π∗I(b). With observation, the response to the ex-

perimental deregulation is attenuated. Further, response heterogeneity is attenuated by endogenous

belief heterogeneity given β′ ≤ 0 under the Pro-Environment government.

6 Randomized Controlled Trials

This section considers econometric inference in the context of RCTs satisfying Assumption 1 and

thus stripped of standard self-selection and endogeneity concerns. Pre-experiment, the treatment

and control groups in the RCT will exhibit common investment levels and identical trends (equation

(5)).

6.1 Inference in RCTs

To fix ideas, consider then the following RCT setting. Firms are initially deregulated, with πP = π.

During the Experiment Stage, an equal measure (θ = 1/2) of firms are assigned to the two possible π

values. In the Exogenous Policy Economy, once the Implementation Stage begins, the government

is powerless to prevent the policy variable reverting back to πI = π. In the Endogenous Policy

Economy, the government sets policy optimally given the evidence supplied by its econometrician.

For the purpose of the numerical example, we assume there are two industries, with their pollu-

tion benefits being i.i.d. draws from the uniform distribution on [0, 1]. For balance, we now consider

the Endogenous Policy Economy under a Pro-Investment government that will deregulate if the

average pollution benefit exceeds the cutoff value b∗ =0.75. We’ll consider here relatively short

policy shock durations of 1 year, as would tend to be true for many real-world RCTs. The following

parameter values are assumed: r = .05; δ = .10; µ = 0; λE = 1; λI = 1; π = 1; π = 0; x = 1; γ = 1;

and ν = 4.

On the horizontal axis of Figure 4 is the true value of the unknown parameter b. On the vertical

axis is the difference between investment by the control group (πE = π) and treatment group (πE =

π). Since treatment and control group firms, being considered industry by industry, have identical

investment prior to the experiment, the vertical axis also measures the difference in differences. The

solid line measures control-treatment investment difference in the Endogenous Policy Economy and

the dotted-dashed line measures the difference in the Exogenous Policy Economy. The dashed line

considers the effect of more favorable priors (triangular distribution with greater weight on high

b values) on an otherwise identical economy with endogenous long-term regulation. The dotted
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line considers the effect of a higher cutoff value (b∗ =0.85) on an otherwise identical economy with

endogenous long-term regulation.

Figure 4 allows us to contrast the inference that will be made by a sophisticated econometrician,

who accounts for the role of estimation in policy-setting, versus a naïve econometrician who ignores

it. Consider, say, an academic econometrician working in the Endogenous Policy Economy. The solid

line in Figure 4 reflects reality. Therefore, if the econometrician is sophisticated, she will account for

the link between policymaking and empirical evidence and use the solid line in performing inference,

resulting in correct estimation of the parameter b. If the econometrician is naïve, she ignores the

link and instead uses the dotted-dashed line to perform inference. The naïve econometrician will

understate the value of the causal parameter b. For example, suppose the true value is b = 1,

resulting in an observed control-treatment investment difference of 100. Working along the dotted-

dashed line the naïve econometrician will infer this difference resulted from b = .70.

Another oft-mentioned real-world concern is that inferences regarding regulatory impacts will

be biased if predicated upon a discretionary RCT, perhaps due to a government having private

knowledge. Assumption 1 rules out this problem. However, ex post endogeneity gives rise to a

similar problem. To see this, suppose our academic econometrician examines the control-treatment

investment difference in an endogenous policy economy endowed with more favorable priors (F )

regarding the parameter b. As shown in the dashed line, for any given realization of b, the investment

difference is larger in this economy than under less favorable priors (solid line). If the econometrician

failed to account for the effect of more favorable priors, she would overstate b. For example, suppose

the true value of b is .90, resulting in an observed control-treatment investment difference of 100

under positive priors. Working along the solid line the econometrician will incorrectly conclude this

difference resulted from b = 1.

It is also apparent from Figure 4 that correct parameter inference in our RCT is contingent

upon a correct stipulation of the deep parameters of the government objective function into which

econometric estimates will be fed. To see this, note that the dotted line illustrates that a shift

downward in the control-treatment investment difference occurs here if the government were to

impose a higher threshold for deregulation.

6.2 Hawthorne and John Henry Effects in RCTs

This subsection considers the potential for control and treatment groups to exhibit observer effects

in RCTs. To illustrate, we return to the same RCT and parameter values as in the preceding

subsection, focusing on a government that is willing to use evidence from the RCT to set regulatory

policy. But again, let us assume that observation may not be feasible, allowing us to assess whether
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the act of observation changes behavior.

The results are illustrated in Figure 5. On the horizontal axis is the true value of the causal

parameter b, with the figure showing investment by treatment and control groups, as well as the

investment difference, for cases when firms are observed and when they are not. As shown, both

treatment and control groups change their investment under observation. But note, by construction,

the experimental treatment itself is identical under observation versus non-observation: 50% of the

firms are regulated and 50% are unregulated.

What does differ between observation and non-observation is the expected path of the policy

variable post-experiment. If observed, firms expect the government to utilize the experimental evi-

dence in order to correctly infer b, going on to implement π∗I(b), implying regulation will occur some

percentage of the time, with heterogeneous beliefs regarding the probability. Absent observation,

firms know the government must rely upon prior beliefs in setting policy long-term, implying regula-

tion with probability one (π∗IP = π) given that the deregulation threshold exceeds the unconditional

average of b.

Apparently, as shown in Figure 5, changes in the distribution of the policy variable post-

experiment, resulting from observation, induce changes in investment by both treatment and control

groups during the experimental period, as well as changes in the investment difference. The next

subsection sets out to understand why.

6.3 Analytical Treatment of RCTs

This subsection characterizes analytically some underlying challenges to inference in RCTs. To

begin, it will be useful to consider the difference between the shadow value of capital across the

control (πE = π) and treatment (πE = π) groups. Using equation (18) we have:

qE(x, b)− qE(x, b) =
(π − π)b

(r + δ + λI)
(26)

Notice, the preceding equation shows that the difference between the shadow value of capital

between control and treatment groups is actually invariant to the distribution of the policy variable

during the Implementation Stage. After all, just as randomized assignment ensures there is no

selection based upon unobservable firm characteristics (bj), random assignment also ensures there is

no selection based upon expectations. That is, post-experiment policy expectations are necessarily

equalized across treatment and control groups, just as a placebo effect is equalized across groups in

medical experiments. Since long-term expectations are the same, the difference between the shadow

values of capital between treatment and control groups must be attributable to differences in the

expected discounted marginal product of capital during the experiment itself. In fact, the difference
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between qE and qE shown in equation (26) is just the present value of a claim to the flow of excess

benefits (π − π)b accruing to the control group during the Experiment Stage.

But recall, the preceding subsection found that the control-treatment investment difference did

indeed hinge upon expectations regarding the policy variable path post-experiment. It is this invest-

ment difference that is the outcome variable observed by econometricians, not the control-treatment

shadow value difference (equation (26)). It is the behavior of the former that we must then under-

stand.

Letting ∆ denote the difference between control and treatment group investment, from equation

(18) we have:

∆(x, b) = i∗[qE(x, b)]
Control

− i∗[qE(x, b)]
Treatment

(27)

=

(
ν − 1

νγ

)ν−1 [(
qE(x, b) +

(π − π)b

(r + δ + λI)

)ν−1
−
(
qE(x, b)

)ν−1]

=

(
ν − 1

νγ

)ν−1  [ x
r+δ−µ +

(
π + λI

(
β(b)π+(1−β(b))π

r+δ

))(
b

r+δ+λI

)
+ (π−π)b

(r+δ+λI)

]ν−1
−
[

x
r+δ−µ +

(
π + λI

(
βH(b)π+(1−β(b))π

r+δ

))(
b

r+δ+λI

)]ν−1
 .

A key point to note in equation (27) is that beliefs (β(b)) determine the investment of both

the treatment and control groups. Since observation influences beliefs, there will be observation

effects for both the treatment group (Hawthorne Effect) and the control group (John Henry Effect).

Moreover, the size of these effects will vary with prior beliefs and the parameters of the government

objective function into which the evidence is fed. After all, as shown in equation (11), the belief

function is determined by F and b∗.

Despite the presence of observer effects for both treatment and control groups, it might be

hoped that the observer effects will be of equal size across the two groups, so that the control-

treatment investment difference will be left uncontaminated. However, as shown in equation (27),

in terms of the measured outcome variable i, in contrast to the unmeasured shadow value of capital

q, observation effects do not generally cancel.

At this stage it is instructive to consider the exception proving the rule. If and only if one were

to assume the investment cost parameter ν is equal to 2, investment is linear in the shadow value of

capital and the observation effects hitting both treatment and control groups cancel. In particular,

it follows from equation (27) that:

ν = 2 =⇒ ∆(x, b) =

(
1

2γ

)
(π − π)b

(r + δ + λI)
. (28)

Notice, if ν = 2, the control-treatment investment difference does not depend on expectations

regarding the distribution of the policy variable post-experiment.
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Up to this point we have considered a very simple investment cost function to keep the algebra

simple. However, in order to provide a complete characterization of the circumstances under which

differences and (difference in differences) derived from RCTs are immune from post-experiment

expectations contamination, it will be useful to consider a broader class of cost functions, reflective

of those considered in the literature with the goal of creating a more realistic depiction of dynamic

behavior. A number of realistic frictions create regions of optimal inaction, as well as lumpy policies.

For example, Abel and Eberly (1994) consider that there can be fixed costs, and that the agent may

not be able to sell capital for the same price at which it is purchased. Chetty (2012) has argued that

such frictions and associated inaction regions can cloud the interpretation of empirical evidence.

Indeed, as we show next, such frictions contaminate RCTs.

To illustrate, the remaining analysis considers the following General Investment Cost Function.

Definition 1 General Investment Cost Function: The fixed cost to positive investment is ϕ+ ≥ 0.

The fixed cost to negative investment is ϕ− ≥ 0. Capital can be purchased at price P+ and sold at

price P− ≤ P+. Adjustment costs are ψ, where ψ is a strictly convex twice differentiable function

of investment attaining a minimum value of zero at i = 0.

Two points are worth noting at this stage. First, since the General Investment Cost Function

shares with the initially-posited cost function (γi
ν
ν−1 ) the property of being invariant to k, it follows

that the shadow value formulae derived in Subsection 3.4 remain valid. Second, Abel and Eberly

(1994) show that under such a cost function, investment is weakly monotone increasing in q. They

also show that if there are no fixed costs, optimal investment is continuous in q, with i∗ = 0 optimal

for all q ∈ [P−, P+], turning negative at points to the left of this interval and positive at points to

the right. If there are fixed costs, optimal accumulation is zero over a wider interval of q values,

and exhibits discontinuities at the optimal thresholds for switching from inaction to action.5

Recall, under the initially-posited investment cost function, the control-treatment investment

difference (as well as the difference in differences) was shown to be invariant to the post-experiment

policy variable expectation if and only if investment is linear in q, which held under the parametric

assumption ν = 2. To ensure that investment is linear in q under the General Investment Cost

Function, one must rule out fixed costs, wedges between the buy and sell price of capital, and

assume quadratic adjustment costs. We thus have the following proposition.

Proposition 3 If and only if the Randomized Controlled Trial is relevant, with the empirical evi-

dence affecting the post-experiment policy variable outcome with positive probability, the treatment

group will exhibit a Hawthorne Effect and the control group will exhibit a John Henry Effect. The

5See the discussion of Figure 1 in Abel and Eberly (1994).
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difference between control and treatment group investment (and the difference in their differences)

is invariant to factors affecting post-experiment policy variable expectations if and only if the Gen-

eral Investment Cost Function features: a quadratic adjustment cost function (ψ); zero fixed costs

(ϕ− = ϕ+ = 0); and zero wedge between the buy and sell price of capital (P− = P+).

The importance of the preceding discussion is illustrated in Figure 6 which plots the control-

treatment investment difference as determined by the causal parameter b, while considering alter-

native configurations of the General Investment Cost Function. Aside from investment costs, the

figure retains all the parametric assumptions of Figure 5. Figure 6 now assumes the investment cost

parameter ν is equal to 2. The solid line considers the case of non-observation, as well as the case of

a cost function meeting the criteria stipulated in the proposition, with zero fixed costs and equality

of the buy and sell price of capital. Here there is no need to account for observation effects when

making inferences based upon the control-treatment difference.

The dashed line considers that there is a wedge between the buy and sell price of capital. In

particular, the sell price of capital is only 9.75, falling below the buy price of capital of 10. Clearly,

this friction can lead to faulty inference. For example, suppose the true b value is actually quite

high falling into the range from .80 to .95. Here the investment difference is zero. If one were to

mistakenly rely upon the solid line for inference, which ignores the effect of partial irreversibility,

one would naturally conclude that b = 0. After all, the investment difference is always equal to zero

at b = 0 since b = 0 implies firms do not at all care about pollution regulation.

The dotted line considers that in addition to there being a wedge between the buy and sell price

of capital, there is also a small fixed cost, say a required marketing cost, associated with selling

capital. Here again one sees that real frictions create a substantial challenge to correct inference.

For example, suppose the true value of b is 0.60, resulting in an investment difference of .50. If one

were to mistakenly ignore the effect of real frictions, relying on the solid line for inference, one would

incorrectly infer this resulted from b = 1.

The preceding discussion brings up a more general point. We have been analyzing Rational

Expectations Equilibria in which the government is able to correctly infer causal parameters based

on econometric evidence. However, it is apparent that NPEs and RCTs, by themselves, may not be

suffi cient for this purpose. To see this most clearly, consider first Figure 7A. Figure 7A returns to

our initial NPE (Figure 2) featuring deregulation and considers our Pro-Environment government

applying an even lower cutoff b∗=.45. We conjecture an equilibrium in which the government can

determine the true parameter value. However, suppose the government has only the experimental

outcome variable, in our NPE the investment reaction at the start of the experiment, to serve as the

basis for its inference. It is apparent that the behavior of this outcome variable is inconsistent with
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the conjecture of fully correct inference since it is non-monotone in b. The outcome variable simply

cannot be inverted to solve for b. Under such a government, we know β′ ≤ 0 and so the expectations

channel causes industries with higher b values to assess a lower probability of deregulation in the

long-term. Apparently, this expectations effect is here strong enough so that there is a region of b

values, 0.80 to 0.90, where the investment response is actually decreasing in b. Thus, if the observed

investment reaction falls into the region 0.80 to 1, the econometrician would not be able to infer the

true b value.

Similarly, Figure 7B returns to the parameters in Figure 4 but now assumes x is close to zero.

This figure illustrates a case in which a non-monotonicity emerges in the RCT investment difference

making it impossible for the government to infer the true b value over some ranges of this outcome

variable.

7 Conclusion

This paper illustrates an inherent tension between the perceived credibility of the quasi-experimental

methodology and its actual credibility. In particular, once this econometric methodology becomes

suffi ciently credible, and perhaps it already has passed this threshold, estimates derived from it

will actually be used in setting policy. But this contaminates the original econometric estimates by

exposing them to what we have termed ex post endogeneity, with treatment responses dependent

upon: the (unknown or unspecified) parameters of policymaker objective functions; prior beliefs

regarding the causal parameters to be estimated; and endogenously heterogeneous policy expec-

tations. The failure to account for ex post endogeneity leads to faulty inference regarding causal

parameters. More generally, it is apparent from our analysis that it is not obvious, a priori, how one

should interpret the evidence coming out of RCTs and NPEs in dynamic settings. Our look below

the surface reveals that, far from being stand-alone objects, correct interpretation may require an

extremely subtle analysis or may require the imposition of strong functional form assumptions.

Two closely-related paradoxes are shown. Policy-relevant analyses are contaminated by ex post

endogeneity while policy-irrelevant analyses are not. Similarly, a credible study is contaminated by

Hawthorne and John Henry effects while a non-credible study is not. It follows that there is an

inherent trade-off between using contemporary experiments that are tailor-made for an upcoming

government decision versus historical experiments that generate less directly relevant information,

but are less exposed to the contaminating effects of ex post endogeneity.
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Appendix: Model Solution via Optimal Control

For brevity, the argument b is omitted from the derivation, and so the solutions obtained hold

for arbitrary b values. In all cases, we pin down analytical solutions for ν ∈ {2, 3, 4, ...}. We solve
via backward induction.

Implementation Stage

The Hamilton-Jacobi-Bellman (HJB) equation is:

rV I(x, k) = max
i

(x+ πIb)k − γiν/(ν−1) + µxV I
x (x, k) +

1

2
σ2x2V I

xx(x, k) + (i− δk)V I
k (x, k). (29)

We conjecture the following value function that is separable between the value of assets in place and

growth options:

V I(x, k) = kqI(x) +GI(x). (30)

Under the posited functional form, the optimal instantaneous control during the Implementation

Stage is i∗(qI). Substituting the preceding function into the HJB equation, and then isolating the

terms scaled by k, we obtain the following ODE for the shadow value of capital:

(r + δ)qI(x) = (x+ πIb) + µxqIx(x) +
1

2
σ2x2qIxx(x). (31)

We conjecture the following linear form for the shadow value of capital:

qI(x) = xζI + ηI . (32)

Substituting the conjectured solution into the ODE for q we obtain:

ζI = ζ ≡ 1/(r + δ − µ). (33)

ηI =
πIb

r + δ

This is the shadow value presented in the body of the paper.

We next determine the growth option value function for the Implementation Stage. Substituting

the conjectured value function into the HJB equation and dropping now the terms scaled by k that

have been eliminated, we obtain the following ODE:

rGI(x) = µxGIx(x) +
1

2
σ2x2GIxx(x) + iqI(x)− γiν/(ν−1).

We begin by noting that

qI(x) = ζx+ ηI ⇒ i∗[qI(x)]qI(x)− γ[i∗(qI(x))]ν/(ν−1) = (ζx+ ηI)νΓ =
ν∑
h=0

φIhx
h (34)
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where

Γ ≡ (ν − 1)ν−1ν−νγ1−ν

φIh ≡
(
ν

h

)(
ηI
)ν−h

ζhΓ.

The preceding result follows from the binomial expansion formula. Utilizing the binomial expansion

result above it follows that the growth option value must satisfy the following ordinary differential

equation:

rGI(x) = µxGIx(x) +
1

2
σ2x2GIxx(x) +

ν∑
h=0

φIhx
h.

Since the preceding form of growth option value function will recur, it will be convenient to

reference the following lemma.

Lemma 2 The growth option value function satisfying

r̂G(x) = µxGx(x) +
1

2
σ2x2Gxx(x) +

ν∑
h=0

φhx
h

has solution

G(x) =
ν∑
h=0

φhωhx
h

ωh ≡ 1

r̂ − µh− 1
2σ

2h(h− 1)
.

Proof. The function G represents the value of a claim to a sum of geometric Brownian motions

to successive powers. The value gh of a claim to an arbitrary constituent flow payment φhx
h must

satisfy the differential equation:

r̂gh(x) = µxg′h(x) +
1

2
σ2x2g′′h(x) + φhx

h (35)

We conjecture this value function takes the form:

gh(x) = φhωhx
h

Substituting the conjectured solution back into equation (35) one obtains the stated expression for

ωh.

From the Growth Option Lemma we obtain the following expressions for the growth option value

function during the Implementation Stage:
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GI(x) =
ν∑
h=0

φIhω
I
hx

h (36)

with φIh ≡
(
ν

h

)
(ηI)ν−hζhΓ.

ωIh ≡ 1

r − µh− 1
2σ

2h(h− 1)
.

Experiment Stage

The HJB equation for the Experiment Stage is:

rV E(x, k) = max
i

(x+ πEb)k − γiν/(ν−1) + µxV E
x (x, k) +

1

2
σ2x2V E

xx(x, k) (37)

+(i− δk)V E
k (x, k) + λIβ

[
V
I
(x, k)− V E(x, k)

]
+ λI(1− β)

[
V I(x, k)− V E(x, k)

]
.

We conjecture and verify the value function is separable between the value of assets in place and

growth options:

V E(x, k) = kqE(x) +GE(x). (38)

Under the posited functional form, the optimal instantaneous control during the Experiment

Stage is i∗(qE). Substituting the Implementation Stage value functions into the HJB equation, and

isolating the terms scaled by k, we obtain the following ODE for the shadow value of capital:

(r+δ+λI)q
E(x) = (x+πEb)+µxqEx (x)+

1

2
σ2x2qExx(x)+λI

[
x

r + δ − µ +
(βπ + (1− β)π)b

r + δ

]
. (39)

We conjecture the following linear form for the shadow value of capital:

qE(x) = xζE + ηE . (40)

Substituting the conjectured solution into the ODE for q, we obtain the following solution, as

presented in the body of the paper:

ζE = ζ ≡ 1/(r + δ − µ). (41)

ηE =

[
(r + δ)πEb+ λI(βπ + (1− β)π)b

(r + δ) (r + δ + λI)

]
.

We next determine the growth option value function for the Experiment Stage. Proceeding as

above and dropping the terms scaled by k in HJB equation, we obtain the equilibrium condition

(r + λI)G
E(x) = µxGEx (x)+

1

2
σ2x2GExx(x)+λI

[
βG

I
(x) + (1− β)GI(x)

]
+

ν∑
h=0

[(
ν

h

)(
ηE
)ν−h

ζhΓ

]
xh.

(42)
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This ODE can be rewritten as:

(r + λI)G
E(x) = µxGEx (x) +

1

2
σ2x2GExx(x) +

ν∑
h=0

φEh x
h. (43)

where

φEh ≡
[
λI

(
βφ

I
h + (1− β)φI

h

)
ωIh

]
+

(
ν

h

)(
ηE
)ν−h

ζhΓ

φ
I
h ≡

(
ν

h

)
(ηI)ν−hζhΓ

φI
h
≡

(
ν

h

)
(ηI)ν−hζhΓ.

From the Growth Option Lemma it follows:

GE(x) =

ν∑
h=0

φEh ω
E
h x

h

with ωEh ≡ 1(
r + λI

)
− µh− 1

2σ
2h(h− 1)

.

Pre-Experiment Stage

The HJB equation is:

rV P (x, k) = max
i

(x+ πP b)k − γiν/(ν−1) + µxV P
x (x, k) +

1

2
σ2x2V P

xx(x, k) (44)

+(i− δk)V P
k (x, k) + λEθ

[
V
E

(x, k)− V P (x, k)
]

+ λE(1− θ)
[
V E(x, k)− V P (x, k)

]
.

We again conjecture a value function separable between the value of assets in place and growth

options:

V P (x, k) = kqP (x) +GP (x). (45)

Inspecting the HJB equation it is apparent that the optimal control policy during Stage P is i∗(qP ).

Substituting the conjectured value function into the HJB equation and isolating those terms

scaled by k, we obtain the following ODE for the shadow value of capital:

(r + δ + λE)qP (x) = (x+ πP b) + µxqPx (x) +
1

2
σ2x2qPxx(x) + λEθq

E(x) + λE(1− θ)qE(x). (46)

We may again conjecture (and verify) the preceding shadow value equation has a linear solution,

resulting in equation (20).

We turn next to determining growth option value during the Pre-Experiment Stage. Confining

attention to the remaining terms in the HJB equation that are not scaled by k, we obtain the
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following ODE:

(r + λE)GP (x) = µxGPx (x) +
1

2
σ2x2GPxx(x) +

ν∑
h=0

[(
ν

h

)
(ηP )ν−hζhΓ

]
xh (47)

+λE

[
θG

E
(x) + (1− θ)GE(x)

]
.

Substituting in the expressions for GE and grouping terms one obtains:

(r + λE)GP (x) = µxGPx (x) +
1

2
σ2x2GPxx(x) +

ν∑
h=0

φPh x
h. (48)

with

φPh ≡
(
ν

h

)
(ηP )ν−hζhΓ + λEω

E
h

[
θφ

E
h + (1− θ)φE

h

]
φ
E
h ≡

[
λI

(
βφ

I
h + (1− β)φI

h

)
ωIh

]
+

(
ν

h

)(
ηE
)ν−h

ζhΓ (49)

φE
h
≡

[
λI

(
βφ

I
h + (1− β)φI

h

)
ωIh

]
+

(
ν

h

)(
ηE
)ν−h

ζhΓ. (50)

Again, the growth option value is a linear sum of the geometric Brownian motion x to successive

powers. From the Growth Option Lemma it follows that growth option value during the Pre-

Experiment Stage is:

GP =
ν∑
h=0

φPh ω
P
h x

h (51)

ωPh ≡ 1

r + λE − µh− 1
2σ

2h(h− 1)
.
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Figure$4:$Randomized$Controlled$Trial$
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Figure(5:(Observer(Effects(in(RCTs(
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Figure$6:$Irreversibility$and$RCTs$
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Figure'7A:'NPE'Iden+fica+on'Failure'
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Figure$7B:$RCT$Iden*fica*on$Failure$


