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Abstract

We develop a general equilibrium model that delivers realistic fluctuations in both the level as

well as the dispersion in executive pay as a result of changes in the technology frontier. Our

model recognizes that executives add value to the firm not only by participating in production

decisions, but also by identifying new investment opportunities. The economic value of these two

distinct components of the executive’s job varies with the state of the economy. Improvements

in technology that are specific to new vintages of capital raise the skill price of discovering new

growth prospects – and thus raise the compensation of executives relative to workers. If most of

the dispersion in managerial skill lies in the ability to find new projects, dispersion in executive

pay will also rise. Our model delivers testable predictions about the relation between executive

pay and growth opportunities that are quantitatively consistent with the data.
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Dispersion in pay between top executives and workers, as well as among executives, has fluctuated

considerably over the last century. These large changes over time have sparked a considerable

debate among economists and policymakers.1 Advocates of a ‘market-based’ view of executive

compensation argue that the level of pay is the efficient outcome from firms competing for scarce

managerial talent in the market for executives. In contrast, proponents of a ‘rent-extraction’ view

of compensation propose that executive pay is instead the result of weak corporate governance and

acquiescent corporate boards that allow executives to (at least partly) set their own pay and extract

compensation in excess relative to the value that they add to the firms that they manage. However,

most of the current explanations model executive skills (such as managerial talent, or their ability

to extract rents) as one-dimensional. Instead, we argue that executives contribute to their firms

along multiple dimensions, and importantly, that the marginal value of those skills could change

with economic conditions. In this paper, we focus on one important aspect of an executive’s job –

the ability to identify new investment opportunities – and show that the interaction of this skill

with technological progress can lead to substantial fluctuations in both the level and the dispersion

in executive pay.

We build a dynamic general equilibrium model with heterogenous firms that employ executives

and workers. Executives add value to the firm along two dimensions. First, similar to workers, they

provide labor services that are complementary to the firms’ existing assets. However, executives

are distinct from workers in that they also participate in the creation of new capital. Specifically,

executives have the ability to identify new investment opportunities for the firm. The efficiency of

an executive in identifying these opportunities depends on the quality of the match between the

firm and the executive. Matching between executives and firms is random, and so the quality of

the match is initially unobservable. Over time, as executives make investment decisions, all market

participants update their beliefs about the quality of the match from her performance, and those

with poor performance are fired. In equilibrium, executives are rewarded for both of their skills,

while workers are only rewarded for their efforts in production. Similar to worker compensation,

executive pay includes a component that is related to their direct contribution to the production

process, which is proportional to aggregate output. But the compensation of executives includes a

second component that depends on the marginal return to new investments, which in turn depends

on the perceived quality of the match and the bargaining power of executives. Thus, our framework

departs from canonical models of executive pay that relate compensation to a single measure of

firm size, and allows us to explain why observed levels of pay differ substantially across firms even

after controlling for firm size.

Our model generates time variation in both the level of executive pay – scaled by either the

earnings of the average worker, or by total output – as well as the dispersion in pay among executives.

The key mechanism is that the marginal returns of these two skills are neither constant nor comove

1For instance, starting in August 2015, the Securities and Exchange Commission (SEC) requires all public firms to
disclose the ratio of the pay of the CEO to the median compensation of their employees.
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perfectly with each other. This result arises naturally in our model in the presence of two forms of

technological progress. Some advances take the form of improvements in labor productivity, and are

complementary to existing investments. This type of technological progress, which we refer to as

disembodied technical change, benefits both workers and executives. Other types of innovations

are embodied in new vintages of capital–we refer to this shock as embodied technical progress.

This form of technical change leads to fluctuations in the marginal return of new investments

that are contemporaneously uncorrelated with aggregate output. That is, these technological

advances increase output only after they are implemented through the formation of new capital

stock. Since executives take part in discovering new investment opportunities, their compensation

reacts immediately to embodied technical progress, but the remuneration of workers does not. Thus,

the level of pay of the average executive relative to the earnings of the average worker increases with

the ratio of the marginal return to new investments relative to current output. Since the quality

of the executive-firm match determines the managers’ ability to identify new growth prospects for

their firms, the dispersion in pay across also comoves with the level of relative pay.

We estimate the parameters of the model using the simulated method of moments. We target

moments of aggregate investment and consumption, and the dispersion in firm-level investment

rates, valuations and profitability. In addition, we also target features of executive pay. Our model

generates a realistic dispersion of executive pay across firms, and substantial time variation in

both the level and dispersion of executive pay. Our model also delivers testable predictions about

the relation between executive pay and firm growth. We examine these predictions by using two

main datasets on executive pay. First, we use Execucomp, which provides information on executive

compensation for a large number of publicly-traded firms since 1992. Second, we use the long-run

dataset from 1936 to 2005 constructed by Frydman and Saks (2010). A main advantage of these

data for our purposes is that they allow us to study a much longer time period, and provide more

variation in aggregate conditions. However, they cover a much smaller number of firms, and have

limited industry variation. When possible, we present our analysis using both datasets.

We examine the relation between the level of executive pay and firm growth opportunities in

several ways. First, we show that, controlling for firm size, an increase in executive pay predicts

future firm growth. Second, we show that executive compensation is correlated with various ex-ante

measures of growth opportunities at the firm level, including investment, Tobin’s Q or the estimated

value of new innovations of Kogan, Papanikolaou, Seru, and Stoffman (2012). Third, we exploit

changes in tax policy that created exogenous variation in the investment tax credit (ITC) at the

industry level as an instrument for an exogenous shift in the value of investment opportunities

available to firms. Overall, we find a statistically significant and economically substantial relationship

between the level of executive pay and firm growth opportunities, even after we control for a variety

of firm observable characteristics, including firm size and current profitability (as well year and

industry or firm fixed effects). To evaluate the quantitative plausibility of our proposed mechanism,
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we replicate our key empirical results in simulated data from the model. We find that the magnitude

of the estimated correlations is quantitatively similar between the model and the data.

Our model has sharp predictions about the aggregate dynamics of pay inequality among executives

across firms, as well as between executives and workers. Specifically, our model implies that both

the level and the dispersion in executive pay are positively related to the return to new investments

scaled by total output. Even though this ratio is not directly observable in the data, in our model it

is positively related to several variables that are instead observable, for instance, the average rate

of investment in the economy. Thus, we construct a model-based proxy for the aggregate level of

investment opportunities in the economy, and show that this proxy has a strong association with the

level and dispersion in executive pay at medium-run frequencies (frequencies of 5 to 50 years), with

correlations in excess of 75 percent. It is important to note that these medium-run fluctuations in

pay inequality account for a meaningful fraction (approximately one-third) of the total fluctuations

in executive pay inequality from the 1930s to the end of our sample period in the early 2000s.2

Finally, we also examine the relationship between executive pay inequality and various measures

of investment opportunities across different industries. This exercise allows us to ‘difference’ out

any slow-moving, common factors (such as shifts in corporate governance) that may play a role

in driving the aggregate trends in pay inequality. Consistent with our model, we find that pay

inequality – again, both between executives and workers, as well as among executives across firms –

is positively related to measures of investment opportunities at the industry level, such as Tobin’s

Q, investment or the innovation measure of Kogan et al. (2012). Our coefficient estimates imply

that fluctuations in investment opportunities at the industry level have a similar impact on the level

and dispersion of executive pay as an increase in average firm size.

In sum, we find that a model without any structural shifts in parameters – any time-variation

arises purely through the stochastic nature of the model – can go a long way towards replicating the

dynamics of pay inequality. A contribution of our study is to show that a relatively stripped-down

model of technological innovation and growth can go relatively far in matching the aggregate and

cross-sectional variation in executive compensation. Naturally, our model abstracts away from

several structural shifts that may have affected the bargaining power between shareholders and

executives, and that may help accommodate the long run trends in executive pay. Examples of such

structural shifts include, for example, changes in the taxation of top incomes (Frydman and Molloy,

2011), the power of labor unions (Frydman and Molloy, 2012), corporate governance (Kaplan, 2013),

the supply of talent (Goldin and Katz, 2008), and the portability of managerial skills across firms

(Murphy and Zábojńık, 2004; Frydman, 2015).

2With a fixed set of parameters over a 80-year period, our model cannot explain equally well the low-frequency
component in pay disparities over the twentieth century. Frydman and Saks (2010) show that executive pay inequality
exhibits a J-shaped pattern over this period, with a sharp decline in the 1940s, a period of little dispersion in pay
from the 1950s to the 1970s, and a rapid increase in inequality since the 1980s. It is quite likely that changing some of
the parameters over time (for example, by reducing the executives’ bargaining power during the 1940s and increasing
it since the 1980s), our model could better match the low-frequency dynamics of income inequality.
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Our model combines features from several strands of the literature. The key feature of our model

is that executives add value by discovering new investment opportunities. In the neoclassical growth

model, the returns to new investments are intimately related to the current size of the firm and

the profitability of installed capital. Instead, we use a model with vintage capital based on Kogan,

Papanikolaou, and Stoffman (2015) that introduces a wedge between the returns to new investments

and the profitability of existing assets, as well as between the level of investment opportunities and

the current size of firms. The model builds on earlier models of embodied technical change, such as

Solow (1960). Moreover, we follow Jovanovic (1979) and model a simple process of learning about

the quality of the firm-specific match between executives and firms. We differ from most standard

models of executive pay in that we consider the case of executives possessing more than one skills,

and we allow for the prices of these skills may vary over time. In this manner, our framework is

similar to Eisfeldt and Kuhnen (2013). Relative to their work, however, we have a specific type of

skills in mind (working in production and identifying new growth opportunities). Moreover, the

prices for these skills arise endogenously in our equilibrium model, and we focus on pay inequality.

Our work is related toTaylor (2010, 2013), who estimates a structural model of executive wages

and turnover. While his studies focus on reduced-form relations that can arise in several (partial)

equilibrium models, we propose and estimate a particular general equilibrium model that has specific

predictions about the relation between executive pay and growth. Despite considering very different

modelling frameworks, we reach similar conclusions regarding the estimated parameters. Consistent

with Taylor (2013), our estimates suggest that executives capture approximately one-half of the

match surplus. Moreover, we also find that large firing costs are needed in order to reproduce the

level of turnover in the data, (as in Taylor, 2010).

Our work is closely related to Lustig, Syverson, and Van Nieuwerburgh (2011), who also present

a general equilibrium model of executive compensation with both embodied and disembodied

technological progress. In their framework, managerial compensation is proportional to the rents

from installed capital – which they term ‘organization capital’ following Atkeson and Kehoe (2005,

2007). Lustig et al. (2011) show that a shift in the composition of productivity growth from

vintage-specific to disembodied increases the value of organization capital and therefore the level

and dispersion in executive pay. By contrast, we argue that a shift in the level of the technology

frontier leads to a higher value to executives’ ability to identify new growth opportunities, which in

turns increases managerial pay. In our model, improvements in technology that are embodied in new

capital lead to a greater increase in the marginal return to new investments relative to aggregate

output, and thus to higher wage inequality. We view our work as complementary to Lustig et al.

(2011) in that we each examine the dynamics of pay at different frequencies – shifts in the growth

rate of technology affect pay at much lower frequencies than a permanent change in levels.

More generally, our paper contributes to the extensive literature on skill-biased technical change

and income inequality (Griliches, 1969; Autor, Katz, and Krueger, 1998; Krusell, Ohanian, Ros-Rull,

and Violante, 2000; Hornstein, Krusell, and Violante, 2005). These studies argue that improvements
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in technology increase inequality, measured by the gap in skilled to unskilled workers wages, because

skilled labor is more complementary to capital than unskilled labor. Similarly, in our setting

managers’ ability to identify new valuable projects is complementary to technological progress

embodied in new capital goods, whereas workers’ skills are not. We contribute to this literature by

focusing on a particular type of skilled labor – executives – and a particular skill – identifying new

projects – that is complementary to technological progress, and we provide evidence consistent with

our proposed mechanism by relating the level of executive pay to firm growth.

Recent theoretical contributions emphasize the role of competitive assignment models (Terviö,

2008; Gabaix and Landier, 2008). These static models propose that managerial innate ability is

complementary to firm size. To attract the most talented executives, large firms may be willing

to bid up the returns to skills; even small differences in managerial ability can lead to substantial

differences in pay across executives.3 Within a dynamic setup, our model delivers similar predictions

for the relationship between executive pay and a ‘long-run’ notion of firm size that encompasses

not only the value of assets in place but also the firm’s future growth due to new investments. Our

dynamic setup allows us to relate executive pay not only to the current size of the firm, but also to

the growth in firm size. In our setting, the dispersion in executive pay is driven by the managers’

skills at finding new growth opportunities for their current firm, which is more valuable at times

of greater shift in the technology frontier. Finally, our model also delivers testable predictions

regarding the dynamics of pay inequality – both between executives and workers, as well as across

executives.

Our model’s implication that the level of firm’s growth opportunities play an important role in

determining the level of executive pay is consistent with much of the existing empirical evidence.

Several studies have shown that executive pay is positively correlated to Tobin’s Q, (see, e.g.

Smith and Watts, 1992). Fernandes, Ferreira, Matos, and Murphy (2013) provide evidence that

this correlation is robust also in international data. We contribute to this empirical literature

by providing a theoretical model that relates firm growth opportunities to executive pay, even

conditional on the current size of the firm.

1 The model

We consider a dynamic continuous-time economy. There is a continuum of firms of measure

one, and time is indexed by t. We first introduce households and firms in Sections 1.1 and 1.2,

respectively. We discuss the role of executives in Section 1.3. Finally, we describe the competitive

equilibrium of the model in section 1.5.

3Our setting abstracts from assortative matching considerations because managerial skills are match-specific. We
make this assumption primarily to simplify the computation of the equilibrium. Alternatively, we could allow for
heterogeneity in firm growth opportunities, and heterogeneity in managers’ innate ability to find new projects. While
this model would deliver assortative matching, solving its dynamic version would be computationally challenging:
following any change in the relative ranking of firms in terms of investment opportunities, all executives would
optimally switch firms.
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1.1 Households and financial markets

The household side of the model is fairly standard. There is a continuum of households of

measure H > 1. At any point in time, a subset of the households is employed as executives. For

simplicity, we assume that each firm has one executive. There is a unit measure of firms, thus, the

set of executives is also measure one.4 Each household that is not an executive inelastically supplies

a homogenous flow of labor services equal to h dt. We refer to these (H − 1) households as workers.

Executives manage the firms in our economy. Importantly, we propose that executives play

two distinctive roles. First, they discover new investment opportunities and undertake investment

decisions. Second, they operate the firms’ assets in place—for example, they manage the workers and

installed capital to produce with the existing projects. To operate these existing assets, executives

provide an effective flow of labor services equal to e dt. This activity can also be thought of the

executives as monitoring or managing workers. We normalize the total flow of labor services to one,

and therefore (H − 1)h+ e = 1. The parameters e and h allow us to calibrate the baseline level

of pay inequality between executives and workers that is driven only by their provision of labor

services. Since all managers provide the same level of effective labor services e, this component of

pay will not contribute to inequality among executives.

Households make consumption and savings decisions to optimize their lifetime utility of con-

sumption. All households have the same preferences over sequences of consumption C, given

by

Jt = Et

[∫ ∞
t

log(Cs) ds

]
, (1)

Households are not subject to liquidity constraints. They can sell their future labor income streams

and invest the proceeds in financial claims.

Households have access to complete financial markets. Specifically, they can trade a complete

set of state-contingent claims. We denote the equilibrium stochastic discount factor by Λt, so the

time-t market value of a time-T cash flow XT is given by

Et

[
ΛT
Λt
XT

]
. (2)

By considering the case of complete markets, we can focus solely on the behavior of a representative

household which consumes the aggregate flow consumption C each period.

1.2 Firms, technology and aggregate Output

There is a continuum of infinitely lived firms in the economy, which we index by f ∈ [0, 1]. Firms

own and manage a collection of projects. Each project is the basic production unit in our economy.

Each firm hires labor services—workers and executives—to operate the existing projects. The

4More generally, we think of these executives as representing the team of top managers that makes investment
decisions.
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output of these projects can be used to produce either consumption or investment. New projects

are created by combining investment goods (i.e., physical capital) and new ideas (i.e., investment

opportunities).

Active projects

Each firm f owns a constantly evolving portfolio of projects, which we denote by Jft. Projects are

differentiated from each other by three characteristics: a) their operating scale, determined by the

amount of capital goods associated with the project, k; b) the systematic component of project

productivity, ξ; and c) the idiosyncratic, or project-specific, component of productivity, u. Project

j, created at time τ(j), produces a flow of output equal to

yj,t =
(
uj,t e

ξτ(j) kj,t

)φ
(ext Lj,t)

1−φ , (3)

where Lj,t is amount of labor allocated to this project. As we discuss in more detail below, the scale

decision is made at the time of the project creation and it is irreversible. In contrast, the choice of

labor Lj,t allocated to each project j can be freely adjusted every period. Firms purchase labor

services at the equilibrium wage wt. We denote by

πj,t = sup
Lj,t

[(
uj,t e

ξτ(j) kj,t

)φ
(ext Lj,t)

1−φ −wt Lj,t

]
(4)

the profit flow of project j under the optimal hiring policy.

We model technological progress as having heterogeneous effects on different vintages of capital.

Specifically, technological innovations are characterized by two independent processes, ξt and xt.

The shock ξ reflects technological progress embodied in new projects—that is, this shock does

not affect the productivity of assets in place created with older technologies. We model ξ as an

arithmetic random walk

dξt = µξ dt+ σξ dBξ,t, (5)

where Bξ is a standard Brownian motion independent of other shocks in the model. Note that ξs

denotes the level of frontier technology at time s. Thus, growth in ξ affects only the output of

new projects created using the latest technological frontier. In this respect our model follows the

standard vintage-capital model (Solow, 1960).

The second technology shock xt is a standard labor-augmenting productivity process. Since

labor is complementary to capital, x affects the output of all vintages of existing capital regardless

of how distant they are to the technological frontier. The shock x also follows an arithmetic random

walk

dxt = µx dt+ σx dBx,t. (6)

where Bx is a standard Brownian motion independent of all other shocks in the model.
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We model the productivity of each project as uj—a stationary mean-reverting process that

evolves according to

duj,t = κu(1− uj,t) dt+ σu uj,t dB
u
j,t, (7)

whereBu
j is a standard Brownian motion process independent ofBξ. We assume that dBu

j,t·dBu
j′,t = dt

if projects j and j′ belong in the same firm f , and zero otherwise.5 All new projects implemented

at time s start at the long-run average level of idiosyncratic productivity, i.e., uj,τ(j) = 1. Thus, all

projects created at a point in time are ex-ante identical in terms of productivity, but differ ex-post

due to the project-specific shocks.

The firm chooses the initial operating scale k of a new project irreversibly at the time of its

creation. Firms cannot liquidate existing projects and recover their investment costs, but projects

depreciate over time. Specifically, the scale of the project diminishes according to

dkj,t = −δ kj,t dt, (8)

where δ is the economy-wide depreciation rate. Note that the aggregate (quality-adjusted) stock of

installed capital in the economy K,

Kt =

∫ 1

0

 ∑
j∈Jf,t

eξs(j) kj,t

 df (9)

also depreciates at rate δ.

Creation of new projects

To create a new project, firms must combine an investment opportunity with new investment goods.

Executives identify investment opportunities and undertake the investment decisions. The frequency

at which executives find new investment opportunities is match specific—that is, it depends on the

quality of the match between the executive and her firm. Specifically, the likelihood of acquiring a

new project is driven by a firm-specific Poisson process Nf,t with arrival rate equal to λf,t. Depending

on the quality of the match between the firm and its current executive, the arrival rate can be either

high or low {λH , λL}, where λH > λL. Importantly, the arrival rate is unobservable to the firm,

the executive, and all market participants, and there is no private information about the quality of

the match. All parties learn about λf,t by observing the firm’s investment decisions. In the next

section, we detail the process through which firms and executives match (and separate).

Once the firm acquires a new investment opportunity, it purchases new capital goods in quantity

Ij,t to implement a new project j at time t. Investment in new projects is subject to decreasing

returns to scale,

kj,t = Iαj,t. (10)

5We assume that the project productivity shocks are perfectly correlated at the firm level to ensure that the firm
state vector is low-dimensional.
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where α ∈ (0, 1) implies that investment costs are convex at the project level. Decreasing returns to

investment imply that projects generate positive profits. We denote by

qt ≡ sup
kj,t

{
Et

[∫ ∞
t

Λs
Λt

πj,s ds

]
− k1/αj,t

}
(11)

the net value of a new project implemented at time t under the optimal investment policy, where Λt

is the equilibrium stochastic discount factor defined in Section 1.1. Since all projects created at

time t are ex-ante identical, q is independent of j. Equation (11) also describes the value of a new

investment opportunity that arrives at time t.

Aggregate output

The total output in the economy is equal to the aggregate of the output of all active projects,

Yt =

∫ 1

0

 ∑
j∈Jf,t

yj,t

 df. (12)

Aggregate output can be allocated to either investment It or consumption Ct,

Yt = It + Ct. (13)

The new investment goods It produced at a point in time are used as inputs for the implementation

of new projects, as given by the investment cost function defined in (10).

1.3 Executives

Executives participate in production decisions and identify new investment opportunities for the

firm. The quality of a specific match determines the manager’s ability to discover new investment

opportunities for her firm. Specifically, an executive is more likely to find a new idea if she is in a

high-quality match than if the match is of poor quality. The firm and the executive learn about the

quality of their match, although imperfectly, by observing the executive’s investment decisions, and

firms fire the executives that perform poorly. The remuneration of an executive depends on the

quality of the match. Since learning is imperfect, the quality of matches and the level executive pay

vary across firms. Next, we describe the forces that determine the level of executive pay in more

detail.

Match Quality

Firms employ up to one executive at a given point in time. In addition to providing a flow of

labor services e to operate the firm’s assets in place, the executive is in charge of discovering new

investment opportunities. Recall that λf,t determines the likelihood that the firm acquires a new

investment opportunity at time t. We denote by λf,t ∈ {λL, λH} the quality of the match between

an executive and a firm. If a firm were to operate without an executive, it would obtain new
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investment opportunities at the expected rate λL dt. The quality of the match is firm-specific, and

unobservable to all participants. We denote by pf,t the probability that the current match between

the firm and the executive is of high quality—we refer to this measure as the perceived quality of

the match.

Learning and Executive Turnover

After the executive is hired, the firm and the executive (as well as other market participants) learn

about the quality of the match pf,t by observing the executive’s investment decisions. Standard

results on filtering for point processes (Liptser and Shiryaev, 2001) imply that the evolution of pf,t

is given by

dpft = −pf,t (1− pf,t)λD dt+

(
pf,tλH

λL + pf,t λD
− pf,t

)
dNf,t (14)

where λD ≡ λH − λL is the difference in quality between a good and a bad match. Equation (14)

shows that the perceived quality of the match pf,t increases sharply when the firm invests (dNf,t = 1),

and drifts down slowly if the firm does not. Uncertainty about the quality of a given match is

greatest for intermediate values of p. For these intermediate values, the firm’s beliefs are more

likely to experience a greater change as new information comes along. For example, the downward

revision in beliefs will be larger if the executive does not invest when pf,t is close to 1/2.

The value of a match of perceived quality pf,t is

mt(pf,t) ≡ pf,tEt
∫ τ

t
λD

Λs
Λt
qs ds (15)

where τ is the (stochastic) time at which the match is dissolved, and qt is the net present value

of a new project created at time t, which is defined in equation (11). Equation (17) describes the

difference in firm value resulting from the firm hiring a new executive relative to the firm operating

without any executive – in which case it finds projects at a rate λL dt.

Firms with poor-quality matches can choose to terminate the executives and replace them with

someone new. Specifically, at any point in time, firms will fire the executives whose perceived

match quality falls below a threshold pf,t ≤ p∗f,t. Executives who are let go are thrown back in

the pool of potential executives. Since the quality of the match is firm-specific, and it is not an

innate characteristic of the executive (such as managerial ability), these managers can be potentially

re-employed by a different firm. Since there is a continuum of firms and potential executives, the

likelihood that the firm hires the same executive more than once is zero. The firm-specificity of

match quality (which we assume is independent of the quality of the match between the same

executive and a different firm) greatly simplifies solving the model. This assumption ensures that

firms have no incentives to poach executives from other firms, and would likely hire executives that

have been fired by other firms.
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In addition to endogenous turnover, we also allow for exogenous separations: with flow probability

β each period, the match between CEO and firm is dissolved and the firm must hire – and train – a

new executive. This assumption ensures that the distribution of match quality across executive-firm

matches is stationary. In the absence of exogenous separations, firms would keep the first executive

they ever hire who is a good match, and the economy would quickly converge to an equilibrium

where all matches are of high quality – and therefore one in which there is no heterogeneity in match

quality across firms.

Hiring Decisions

Since the quality of the match is firm-specific, all potential new executives are ex-ante identical.

The firm has a prior belief that the quality of the match is high equal to p̄. Training a new executive

incurs a cost equal to cmt(p̄); that is, the training cost is proportional to the equilibrium value

of a new match. For simplicity, we assume that this cost is a direct transfer from the firm to the

households, hence these costs do not affect the pool of aggregate resources available for consumption

or investment.

Finally, we denote by λt the mean quality among the current firm-executive matches,

λt ≡ λL + λD

∫ 1

0
pf,t df. (16)

Here, λt affects the rate at which the economy acquires new projects – or equivalently the rate of

capital accumulation. In general, the level of λ will depend on the efficiency of the firm-executive

matching market, that is, the fraction of active matches that are of high quality.

Executive Compensation

Firms and executives bargain over the surplus generated by the match,

Sf,t ≡ mt(pf,t)− (1− c)mt (p̄). (17)

We assume that executives can capture a fraction η of that surplus. Importantly, we make the

simplifying assumption that the outside option of the executive is zero.6 That is, in order for the

executives to agree to remain with the firm, the firm must promise to pay the executive a flow

compensation wf,t dt – in addition to the compensation for labor services – that satisfies, for all t,

Wf,t = Et

∫ τ

t

Λs
Λt
wf,s ds (18)

6This assumption is made purely for analytical convenience. The assumption is equivalent to assuming that the
measure of potential executives H is sufficiently larger than the set of firms (whose measure is normalized to one)
so that the discounted payoff for an unemployed executive from searching for a job to be zero, mainly because the
likelihood of being hired in a different firm is rather low. Alternatively, we could also have assumed that searching for a
job entails a utility cost that is such that the continuation value of unemployment is normalized to zero. Alternatively,
we could have also modeled the outside option of an executive as starting a new firms. None of these assumptions are
crucial; what matters is that the surplus generated by a match is proportional to the discounted present value of the
returns to new investment, qt.
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and

Wf,t = η Sf,t. (19)

As a result, the total compensation of an executive that works in firm f is equal to

Xf,t =
(
ewt + wf,t

)
dt. (20)

That is, executives are compensated for their effective labor services, at a price wt, as well as for

their ability to generate new investment opportunities at their current firm.

1.4 Discussion of the model’s assumptions

Before we proceed to the analysis of the equilibrium, we discuss some of the assumptions in our

model. First, a key feature of our model is that executives add value by discovering new investment

opportunities. To have a meaningful distinction between investment opportunities and productivity

or the current size of the firm, we depart from the neoclassical growth model. Instead, we use a

model with vintage capital, based on Kogan et al. (2015), that introduces a wedge between the return

to new investments and the profitability of existing assets, as well as the quantity of investment

opportunities and firm size. This is important because it allows us to show that the dispersion in

executive pay depends not only on the current size of the firm, but also on the growth opportunities

that the firm has. We assume that projects arrive independently of the firms’ past investment

decisions, and that firms incur convex investment costs at the project level. These two assumptions

ensure that the optimal investment decision can be formulated as a static problem, and therefore

that the cross-sectional distribution of firm size does not affect equilibrium aggregate quantities and

prices. In the aggregate, the cost of investment is then a convex function of investment level, as in

Abel (1983).

Second, conditional on their vintage, the quality of projects does not vary across firms. Instead,

we could allow for an idiosyncratic part to ξ to capture the notion that the distribution of profitability

of new ideas can be highly asymmetric. Our conjecture is that such an extension would lead to

additional skewness in executive pay, without changing our predictions while introducing additional

parameters to be estimated. Third, our assumption that termination costs are proportional to the

value of a new match implies that the firing threshold will not depend on the state of the economy,

and it guarantees that the average match quality will be constant. Thus, this assumption greatly

simplifies our analysis. Fourth, we assume that the executive’s outside option is zero to keep the

measure of firms constant over time. Alternatively, we could extend the model by allowing the

executive to leave the firm and start a new corporation. Since the value of a new firm will be

proportional to vt(p̄), the qualitative predictions of this model would be similar, at the cost of

having an expanding measure of firms. Finally, we have abstracted away from executive incentives.

Since our focus is on disparities in the level, as opposed to the composition, of pay this assumption
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delivers a tractable general equilibrium model. In sum, we make these assumptions to keep the

model tractable, but these deviations from the neoclassical model do not drive our main results.

1.5 Competitive equilibrium

Here, we describe the competitive equilibrium of our model. Our equilibrium definition is

standard, and is summarized below.

Definition 1 (Competitive Equilibrium). The competitive equilibrium is a sequence of quantities

{Ct, It, Yt,Kt}; prices {Λt,wt}; household consumption decisions {Ci,t}; and firm investment and

hiring decisions {Ij,t, Lj,t, p∗} such that given the sequence of stochastic shocks {xt, ξt, uj,t, Nf,t},
j ∈ ⋃f∈[0,1] Jf,t, f ∈ [0, 1]: i) households choose consumption and savings plans to maximize their

utility (1); ii) household budget constraints are satisfied; iii) firms maximize profits; iv) firms

and investors rationally update match quality given (14); v) the executive’s continuation value

satisfies (19), while flow executive pay wf,t satisfies the promise-keeping constraint (18); vi) the

labor market clears,
∫ 1
0

(∑
j∈Jf,t Lj,t

)
df = 1; vii) the demand for new investment equals supply,∫ 1

0 If,t df = It; viii) the market for consumption clears, and ix) the aggregate resource constraint (12)

is satisfied.

We next characterize the equilibrium dynamics. For ease of exposition, we delegate all proofs to

Appendix A.

We begin by showing that the firm’s termination threshold p∗ is constant across firms and time.

This result directly follows from our assumption of a proportional hiring/termination cost and

greatly simplifies our analysis. Specifically, a firm will fire its executive if the value of the current

match falls below the value of a new match, excluding training costs,

pft ≤ p∗ ≡ (1− c) p̄, (21)

or equivalently, when the match-specific surplus (17) becomes zero. Recall that the surplus created

by a given match is equal to

Sf,t = (pft − p∗)λD Et
∫ τ

t

Λs
Λt
qs ds. (22)

The fact that the firing threshold p∗ is constant implies that the distribution of pf,t across firms

is stationary and therefore the mean quality of active matches λ – defined in (16) – is constant

over time. Given that the assignment problem is stationary, the aggregate dynamics of the model

closely mirror those of Papanikolaou (2011) and Kogan et al. (2015). In particular, the log aggregate

output (12) of the economy equals

log Yt = (1− φ)xt + φ logKt, (23)
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where Kt is the quality-adjusted capital stock defined in equation (9). That is, at the aggregate level,

the model is equivalent to a model with a representative firm that is subject to the labor-augmenting

shock x and employs the stock of quality-adjusted capital K. The law of motion for K is given by

dKt =

(
λ eωt

(
i(ωt)

λ

)α
− δ
)
Kt dt, (24)

where the rate of capital accumulation partly depends on the fraction of output devoted to investment

i(ωt) ≡
It
Yt
, (25)

which itself is a function of the stationary variable

ωt ≡ ξt + α (1− φ)xt − (1− αφ) logKt. (26)

The state vector Zt = (Yt, ωt) is a Markov process that fully characterizes the path of aggregate

quantities and prices. The variable ωt represents deviations of the current capital stock from its

target level – and thus deviations of Yt from its stochastic trend. As we will see below, the variable ωt

will play an important role in determining fluctuations in executive pay inequality over medium-run

horizons.

The marginal return to new investment qt plays a key role in our model. In particular, qt plays a

similar role to ‘marginal Q’ in the neoclassical model – that is, the marginal value of an additional

investment. To see this, note that the first-order condition for investment in (11), combined with

market clearing, imply that in equilibrium,

It =
λα

1− αqt. (27)

The existence of embodied technology shocks imply that the marginal return to new investments qt is

imperfectly correlated with aggregate output Yt in the short run. Following a positive shock in ξ, the

return to new investment q rises while output stays constant. Over time, as the economy accumulates

more capital K, output increases while marginal Q falls. Thus, qt and Yt are cointegrated; their ratio

is stationary and is proportional to i(ωt). This ratio will play an important role for the dynamics of

pay inequality.

Next, we examine the model’s predictions about pay or workers and executives. The equilibrium

pay of a production worker is equal to hwt dt. The wage rate of workers engaged in production is

determined in equilibrium, and satisfies

wt = (1− φ)Yt. (28)
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By contrast, the total level of compensation to the executive currently matched to firm f is given by

Xf,t = ewt + η (pft − p∗)λD qt. (29)

Examining (29), we see that the flow payment to the executive currently matched to firm f has two

components. The first component ewt rewards the executive for her participation in the production

process. The second component – which corresponds to wf,t in equation (20) – rewards the executive

for her ability to identify new investment opportunities for her firm. This second component of pay

is proportional to her added value – which depends on her perceived quality pf,t relative to the

quality of an outside hire and the replacement cost and the net present value of new projects qt.

Equation (29) implies that the average level of executive pay relative to workers will fluctuate

over time as a function of the aggregate level of investment opportunities in the economy. We

examine two types of inequality, inequality between executives and workers, and inequality across

executives.

First, the inequality between executives and workers, defined as the ratio of the average level of

executive pay to workers, is equal to∫ 1
0 Xft df

hwt
=
e

h
+

(∫ 1

0
pft df − p∗

)
η λD

h(1− φ)

qt
Yt
. (30)

Examining (30), we see that the fact that executives and workers are endowed with a different

amount of effective units of labor services generates a baseline, constant, level of inequality between

them. The time variation in the level of inequality between executives and workers is driven by

fluctuations in the ratio of the marginal return to new investments qt, and the current level of output

Yt. As we discussed above, this ratio is stationary – it is a monotone function of the state variable ω

that captures the distance between the current level of the capital stock and the technology frontier.

Second, inequality across executives, defined as the cross-sectional standard deviation of log

executive pay, can be written as

σt

(
log
(
ewt + ηλD (pft − p∗) qt

))
≈ σ (pf,t − p∗)

η λD qt
e (1− φ)Yt + η E[pft − p∗]λD qt

. (31)

As before, we see that inequality among executives varies over time as a function of qt to Yt. To

obtain the last approximation in (31), we approximate Xf around it’s cross-sectional mean,
∫ 1
0 Xf df .

In sum, our model generates time variation in inequality – both between as well as among

executives – as a function of ω. Improvements in investment opportunities – an increase in qt –

relative to current output Yt increase the value of the skill in identifying new investment opportunities.

As a result, the level of pay of the average executive relative to the earnings of the average worker

increases. Since the quality of the executive-firm match determines the managers’ ability to identify

new growth prospects for their firms, and this is the only heterogeneity across managers, the

dispersion in pay across also comoves with the level of relative pay.
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2 Estimation

Next, we describe how we calibrate the model to the data. We start by providing a very brief

overview of the different sources of executive pay data that we use in the paper in Section 2.1. (We

discuss this data in more detail in Section 3.) In Section 2.2, we discuss how we choose parameters

through a minimum-distance criterion and describe which features of the data help identify the

model’s parameters. In Section 2.3, we examine the model’s performance in matching the features

of the data that we target, and the resulting parameter estimates. Finally, we provide some insights

into the mechanism of our model in Section 2.4.

2.1 Data sources

To exploit time series and cross-sectional variation in executive pay, our empirical analysis is

based on a variety of datasets. Our model delivers predictions of our model concern the medium-run

dynamics of executive pay inequality in the economy; hence we use the dataset constructed by

Frydman and Saks (2010), which provides information on the pay of top executives for most of

the twentieth century. Specifically, their data contains the pay of the three highest paid executives

in the 50 largest publicly traded corporations in 1940, 1960 and 1990—a total of 101 firms—from

1936 to 2005. This sample is broadly representative of the largest three hundred publicly-traded

corporations in each year. For each executive, we use an “ex-ante” measure of pay. Specifically,

we measure total pay as the sum of salary, current bonuses, the payouts from long-term incentive

bonuses, and the Black-Scholes value of stock option grants.

A limitation of the Frydman-Saks data is that they cover only a small sample of firms – in

a given year, these data contain only about 75 firms on average. Moreover, the sample covers a

small number of industries and, within those, the number of firms is usually too small to draw any

meaningful conclusions. Thus, these data have limited power to test cross-sectional predictions or

to study the variation in executive pay at the industry level. Whenever appropriate, we therefore

also evaluate the model using the Execucomp dataset. Execucomp provides information on the pay

of top executives in the S&P 500 firms for 1992 and 1993 and, starting in 1994, for all companies

included in the S&P 500, S&P MidCap 400, S&P SmallCap 600 indices, as well as some additional

firms—covering roughly 1,800 companies each year. For consistency, we restrict the sample to the

five highest paid executives in each firm, and we measure total pay for each individual as the sum of

salary, current bonus, payouts from long-term incentive bonuses, the value of restricted stock grants,

the Black-Scholes value of stock option grants, and other forms of pay—this estimated or ex-ante

measure of pay is often called TDC1. Given that both the Frydman-Saks data and Execucomp are

based on proxy statements, the definition of executive pay is fairly consistent across samples.

Finally, one of our empirical exercises requires large cross-sectional and industry variation

during the 1970s and 1980s—a period in which the investment tax credit (and therefore investment

opportunities at the industry level) experienced large, arguably exogenous, variations. For these
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tests, we use instead data from Forbes compensation surveys from 1970 to 1991, which contain

information on the realized pay for the CEOs of the largest 800 firms in the economy. In contrast

to the other two datasets, the Forbes surveys only cover the chief executive and report the gains

realized from exercises of stock options instead of their grant values.

To obtain standard measures of firm financial characteristics and firm performance, we match

all datasets to Compustat. From the 1930s to the mid-1950s, when Compustat starts, we utilize

the financial information hand-collected by Frydman and Saks from the Moody’s Manuals. Only

a limited set of variables are available in their data, which limits the controls that we can use in

different specifications.

Finally, we utilize various sources of data to construct the statistics that allow us to estimate the

parameters in our model. We discuss the construction of these variables in detail in Appendix B.

2.2 Methodology

Our model has a total of 18 parameters. The only parameter that is directly identified by the

data is the capital share in production, φ. Following the existing literature, we choose φ = 1/3 (for a

textbook reference, see, e.g., Cooley and Prescott, 1995). We estimate the remaining 17 parameters

using indirect inference. To do so, we need to choose a set of statistics in the data as estimation

targets. The first column of Table 1 reports the 22 statistics we choose as targets. The existing

data sources to construct each of these statistics are often only available for a subset of the years

covered by our long-run sample on executive pay. To compute each of these statistics, we use the

longest available sample.

When estimating the model, we make two transformations to the parameters. First, we replace

λH with the difference in match quality between the high and low state, λD. In this manner, we

don’t need to check that λH > λL because we can restrict λD to be positive. Second, instead

of estimating the volatility of the project-specific shock σu, we rewrite the model in terms of its

long-run variance, vu ≡ σ2u/
(
2κu − σ2u

)
. This ensures that the distribution of u has finite variance

for all parameter configurations (see Kogan et al., 2015, for more details on the egrodic distribution

of u).

We next briefly discuss how these statistics help us identify the parameters in our model.

Since many of these outcomes are endogenous in our general equilibrium model, the map between

parameters and moments is not always straightforward. Thus, we also describe our reasoning for

choosing these specific 22 statistics. Visual inspection of the sensitivity of the target moments to

the model parameters – the Jacobian matrix ∂X (p)/∂p, evaluated at the benchmark estimates –

confirms our intuition.

The first two moments of aggregate consumption and investment help identify the parameters

governing technology shocks, as well as the adjustment cost parameter α. The volatility of the

risk-free rate, payout growth and the long-run standard deviation of consumption – computed
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using the estimator in Dew-Becker (2014) – help pin down the magnitude of the medium-frequency

fluctuations in economic growth.7 Conditional on the parameters determining the equilibrium

consumption process, the mean of the risk-free rate also helps identify the subjective discount factor

ρ.

The elasticity of executive pay to firm size and the average ratio of inequality between executives

and workers help identify η, e and h. Cross-sectional differences in investment, Tobin’s Q and

executive pay help identify the equilibrium dispersion in firm growth opportunities – a function of

dispersion in match quality, which itself depends on λD, p̄, c and β. The elasticity of investment to

Tobin’s Q and the serial correlation of investment help identify λL and α. The average tenure of

executives helps identify the speed at which the market learns about match quality – which depends

on λD and λL – as well as the cost of executive termination c. The persistence and the cross-sectional

dispersion in firm profitability help identify the parameters driving the project-specific shocks u.

Our estimation methodology closely follows Kogan et al. (2015). Specifically, we estimate the

parameter vector θ using the simulated minimum distance method (Ingram and Lee, 1991). We

denote by X the vector of target statistics in the data and by X (θ) the corresponding statistics

generated by the model given parameters θ, computed as

X (θ) =
1

S

S∑
i=1

X̂i(θ), (32)

where X̂i(p) is the 22× 1 vector of statistics computed in one simulation of the model. We simulate

the model at a weekly frequency, and time-aggregate the data to form annual observations. Each

simulation has 1,000 firms. For each simulation i, we first simulate 100 years of data as ‘burn-in’ to

remove the dependence on initial values. We then use the remaining part of that sample, which is

chosen to match the longest sample over which the target statistics are computed. Each of these

statistics is computed using the same part of the sample as its empirical counterpart. In each

iteration we simulate S = 100 samples, and simulate pseudo-random variables using the same seed

in each iteration.

Our estimate of the parameter vector is given by

θ̂ = arg min
θ

(X −X (θ))′W (X −X (θ)), (33)

where W = diag(XX ′)−1 is our choice of weighting matrix that ensures that the estimation method

penalizes proportional deviations of the model statistics from their empirical counterparts.

7Since dividends are not well defined in our model – the model has no unique dividend policy – we focus instead
on net payouts. Depending on the parametrization, net payouts can be negative. Therefore, we target the volatility of
the ratio of net payouts to book assets.
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We calculate standard errors for the vector of parameter estimates p̂ as

V (θ̂) =

(
1 +

1

S

)(
∂

∂θ
X (θ)′W

∂

∂θ
X (p)

)−1 ∂

∂θ
X (θ)′W ′Ω(θ̂)W

∂

∂θ
X (θ)

(
∂

∂θ
X (θ)′W

∂

∂θ
X (θ)

)−1
,

(34)

where

Ω(θ̂) =
1

S

S∑
i=1

(X̂i(θ̂)−X (θ̂))(X̂i(θ̂)−X (θ̂))′ (35)

is the estimate of the sampling variation of the statistics in X computed across simulations. That is,

the standard errors in (34) are computed using the sampling variation of the target statistics across

simulations (35). We use (35), rather than the sample covariance matrix. We do so because the

statistics that we target are obtained from different datasets (e.g. cross-sectional versus time-series

data), and we often do not have access to the underlying data. Since not all of these statistics are

moments, computing the covariance matrix of these estimates would be challenging even with access

to the underlying data. Under the null of the model, the estimate in (35) would coincide with the

empirical estimate. If the model is misspecified, (35) does not need to be a good estimate of the

true covariance matrix of X.8

Solving each iteration of the model is computationally costly, and thus computing the minimum

in (33) using standard numerical methods is computationally infeasible. We therefore use the Radial

Basis Function (RBF) algorithm in Björkman and Holmström (2000).9

2.3 Estimation results

Table 1 presents the quantitative fit of the model to the statistics that we target. Examining

columns two to five, we note that our model fits the data reasonably well. The model generates

realistic dynamics for aggregate quantities and prices. Further, the model largely replicates the

observed dispersion in firm investment, profitability, valuation ratios, and most importantly, executive

pay.

Although most of the statistics in simulated data are close to their empirical counterparts, there

are a few exceptions. First, and most importantly, the magnitude of the low-frequency fluctuations

in pay inequality is substantially smaller in the model than in the data (15% and 47%, respectively).

Thus, fluctuations in the state of the technology frontier are capable of producing fluctuations in pay

inequality that are approximately one-third of their realized values. This magnitude is actually quite

substantial if one takes into account that the parameters are fixed over the entire sample period.

8Partly for these reasons, we specify the weighting matrix as W = diag(XX ′)−1, rather than scaling by the inverse
of the sample covariance matrix of X. In principle we could weight moments by the inverse of (35). However, doing
so forces the model to match moments that are precisely estimated but economically less interesting, such as the
dispersion in firm profitability or Tobin’s Q.

9The Björkman and Holmström (2000) algorithm first fits a response surface to data by evaluating the objective
function at several hundered points. Then, it searches for a minimum by balancing between local and global search
in an iterative fashion. We use a commercial implementation of the RBF algorithm that is available through the
TOMLAB optimization package.
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In other words, the model does not include any other feature that might have been responsible

for the observed changes in inequality – for instance, changes in taxes, portability of executive

skills, regulation, strength of labor unions, changes in the supply of executive talent or corporate

governance. Incorporating some of these forces into the model would undoubtedly lead to more

fluctuations in inequality.10

Second, firm investment rates in the model are somewhat less persistent than in the data –

investment rates have a serial correlation of 22% in the data vs 11% in the model. This result is due

to the tight link in the model between executive compensation and investment decisions. We could

extend the model to allow for secondary investment decisions – perhaps related to the maintenance

of installed assets – that do not require any executive skill. While this modification would allow us

to match the persistence in investment rates, it would offer few new insights.

Last, the model has difficulty replicating the cross-sectional dispersion in Tobin’s Q observed in

the data; in the model, the inter-quartile range (IQR) in Q is approximately 40% smaller than the

data. Given the fact that part of this dispersion may be measurement error due to imperfections in

the empirical measures of the replacement cost of capital, this under-performance of the model is

not a major concern.

Table 2 reports the estimated parameters, along with their standard errors. Examining the

table, we note that the estimated difference in expected project arrival rates across high and low

match quality is quite substantial λD = 0.68 relative to the mean arrival rate associated with a low

quality match λL = 0.05. This stark difference, which helps the model fit the mean cross-sectional

dispersion in executive pay, implies that learning occurs relatively fast. As a result, the model

requires fairly high replacement costs c = 0.75 to prevent low-quality executives to be fired very

quickly. Indeed, the fact that executive terminations are relatively infrequent in the data poses a

well-know challenge for learning models of executive pay. This difficulty is highlighted by Taylor

(2010), who finds that his model requires substantial non-pecuniary costs to shareholders from

terminating executives. Since in our model the replacement cost c does not require real resources

– it is mainly a transfer from firms to households– its presence simply helps the model to fit the

observed turnover rate.11 Along these lines, the fact that the unconditional probability of drawing a

high quality match is fairly low p̄ = 0.10 implies that terminations are rarer than they otherwise

would. Further, the estimated likelihood of exogenous turnover is also fairly low, β = 0.03, which

helps the model generate substantial dispersion in match quality as well as sufficiently long tenure

10For example, Frydman and Molloy (2012) show that an increase in the strength of labor unions may be responsible
for the sharp decline in pay disparities between executives and workers during the 1940s. In the context of our model,
this would imply that the bargaining power of executives, which we keep constant in our analysis, declined during
this period. Similarly, Piketty, Saez, and Stantcheva (2014) suggest that the reduction in income tax rates may have
increased executives’ incentives to bargain for higher pay since the 1980s. We could model this as an increase in the
bargaining power of executives, which would lead to higher inequality in pay across executives, and between executives
and workers.

11We could extend the model to allow for other features that would slow down learning, which would likely lower
the estimated parameter c. For instance, shareholders could observe investment decisions with noise. We refrain from
doing so to keep the number of parameters manageable.
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lengths. Last, the estimated share of the match-specific surplus that accrues to the executive is

roughly one-half, which is consistent with the estimates of Taylor (2013) obtained using a very

different structural model.

The rest of the parameter estimates are fairly similar to those obtained by Kogan et al. (2015).

The volatility of the embodied shock ξ is approximately twice the volatility of the disembodied

shock, implying that vintage effects are especially important in generating time variation in pay

inequality. The estimate for the parameter governing decreasing returns to scale in investment is

α̂ = 0.31, implying an investment cost function that is not far from quadratic at the project level.

Last, we should emphasize that not all of the parameters are precisely estimated. Their precision

reflects the degree to which the output of the model is sensitive to the individual parameter values.

For instance, the rate of capital depreciation, the mean values of the two technology shocks µx

and µξ and the rate of time preference parameter ρ are estimated with large standard errors. By

contrast, and as it is typically the case, shock volatilities are fairly precisely estimated.

2.4 Examining the model mechanism

To provide further intuition on the model, we briefly examine the forces that lead to pay

inequality across executives, as well as variation in inequality over time, within our framework.

We first examine how learning about match quality determines the equilibrium allocation of

executives to firms. In Figure 1 we plot four possible paths for the perceived match quality pf,t

(dashed line) along with the actual quality of the match (solid line) over a period of 25 years in

simulated data. Shaded regions in the plot correspond to the tenure of different executives.

In the first row, the firm tries a few executives until year 12, all of which prove to be low-quality

matches. Following the exogenous separation of the incumbent in year 13, a new executive is hired

who was a high-quality match for the firm. Following a sequence of successful investment decisions,

shareholders adjust upwards the probability that this match is of high quality. In the second row, a

high quality match is hired in year 1 following the dismissal of the previous executive. Within 5

years, shareholders have observed enough successful investment decisions to conclude that the match

is of high quality. The match is exogenously dissolved in year 21, and the firm unsuccessfully tries to

hire a high quality match in following years. In the third row, a low quality match is hired in year 2

following the dismissal of the previous executive, who what revealed to be a low quality match. Even

though the new match is also not very successful, a lucky investment decision in the following year

implies that it takes another 5 years before shareholders revise their beliefs sufficiently to dismiss

the executive. The replacement turns out to be a high quality match, and shareholders realize this

relatively quickly. Last, in row four, following the exogenous termination of the incumbent executive

in year 4, the firm goes through a sequence of low-quality matches. Even though the executive hired

in year 13 is in fact a high quality match to the firm, she fails to make any successful investment

decisions and is therefore dismissed in year 15. Her successor – who is also a high quality match –

has almost the same fate, but avoids termination right before the threshold in year 17.
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The left panel of Figure 2 plots the steady-state distribution of perceived match pf,t. Not

surprisingly, the distribution is bimodal, with most of the mass being concentrated at the edges.

This is the result of two forces. First, the difference in match quality λD is fairly high, so firms learn

about the quality of the match with executives fairly quickly. Second, the exogenous separation rate

β is fairly low, so matches that are perceived to be high quality are fairly long-lived. This explains

the large mass at the top end of the distribution.

We next provide some intuition for the determinants of pay inequality, which is characterized in

our model by equations (30) and (31). As we discussed earlier, the disparities in pay between execu-

tives and workers are largely the result of performing different functions; both receive compensation

for the provision of labor services, but managers are also remunerated for their ability to identify

new investment opportunities. The dispersion in executive pay across firms is mainly determined by

the cross-sectional dispersion of pf,t, as well as the value of investment opportunities qt relative to

the equilibrium wage wt. Since match quality and the return to new investment are complements –

they enter multiplicative in equation (29) – pay dispersion among executives increases when there is

more dispersion in match quality, or when investment opportunities are greater.

In sum, the dynamics pay inequality across executives and between executives and workers are

determined by the ratio of the value of investment opportunities qt to the equilibrium wage, wt. In

our model, this ratio increases monotonically with the mean-reverting state variable ω, as shown

in the right panel of Figure 2. Recall that ω, defined in equation (26), represents the transitory

deviations of the current (effective) capital stock from its target level. This gap exists because the

technology frontier evolves stochastically, whereas the capital stock increases slowly. Thus, ω can be

interpreted as the level of investment opportunities in the economy in a given year.

3 Model predictions

Our next step is to provide direct evidence consistent with the predictions of the model. To

evaluate the model’s quantitative performance, we also compare the magnitude of these empirical

estimates to those performed on simulated data from the model.

3.1 Firm-level evidence

The main prediction of the model is that the level of executive pay in a given firm is closely

related to the value of investment opportunities – recall equation (29). We validate this prediction

by examining the association between the level of executive pay in a given firm and various measures

of growth opportunities, and by establishing a positive relationship between executive pay and

future firm growth.
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Data description

As we discussed above, depending on the specific analysis, we use three different samples on

executive pay: the Frydman-Saks data for 1936-2005 (which we refer to as the ‘long sample’), the

Forbes data for 1970-1991, and the Execucomp data for 1992-2010 (which we refer to as the ‘large

panel’). Table 3 presents summary statistics of executive pay and other firm characteristics for

each of these datasets in Panels A, B and C, respectively. Except when indicated otherwise, all our

variables are in millions of year 1982 dollars.

The summary statistics reveal some important differences across the three samples. Recall that

the long sample is representative of the 300 largest firms, whereas Forbes is based on 800 large

firms, and Execucomp reports the pay for roughly 1,800 corporations. These differences in sample

selection are accurately reflected on firm size: the average value of log assets is 9.22, 8.22, and

7.29, respectively. Not surprisingly, the Execucomp data have the most dispersion in firm size; the

interquartile differences in log assets are about 2.2, while these differences are much smaller in the

long panel (about 1.6) and in the Forbes data (about 1.4). Despite the difference in the size of firms

across samples, and despite the fact that Forbes covers exclusively CEOs, the mean level of pay

is lowest in the long sample (about 1.25), and highest in the large panel (about 1.55). The main

reason for this pattern is that executive pay was relatively low until the 1970s, and experienced a

rapid increase since the 1980s (Frydman and Saks, 2010).

All samples, however, reveal a substantial amount of variation in executive pay across firms.

Executives in the 75th percentile of the distribution in pay receives a bit more than double the level

of pay of the executives in the 25th percentile in both the Frydman-Saks and in the Forbes data. In

the Execucomp data, where there is the most variation in firm size, the interquartile differences in

pay are even higher: the 75th percentile in pay is about 3.5 times the level of the 25th percentile in

this sample.

We relate executive pay to the book value of assets, a measure of firm size that reflects the value

of assets in place. Not surprisingly, the pay of the average top executive represents a very small

fraction of the value of the firm (between 0.02 to 0.21 percent on average across samples). Yet there

is large variation in the level of pay relative to firm size across firms and over time; the standard

deviation in this measure is as high or higher than the mean in each sample. This simple statistic

suggests that there may be large variations in the level of pay across firms, even after controlling for

firm size.

In other dimensions, the samples are relatively similar. For the median firm, net income

represents about 4 to 5 percent of the value of assets, and stock returns vary between 0.11 and

0.13. The average Tobin’s Q is lower in the Forbes data than in the Execucomp sample, but that

is because the data cover different periods (1970-1991 vs 1992-2010). Finally, in the Execucomp

sample we can measure the value of investments on physical assets. The average (median) firm has

capital expenditures of about 16 (11) percent the value of its existing physical assets.
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Estimating the value of new projects

The model developed in Section 1 posits a tight link between executive compensation and the

value of new investments in the economy qt. While all new projects are ex-ante identical in our

theoretical framework, there is substantial heterogeneity in the value of new investment opportunities

in practice.12 Moreover, for a given aggregate realization of qt, there will be variation on whether

firms have acquired profitable new projects in a given year. Thus, to assess the predictions of the

model using firm-level data, we relate executive pay to a measure of the value of new investments at

the firm level.

Constructing an empirical proxy the marginal value of new investments is not trivial. For

example, Tobin’s Q, one of the most common measures of investment opportunities in the literature,

reflects average rather than marginal values—in other words, Tobin’s Q also reflects the profitability

of existing projects. While we return to this and other measures of growth opportunities in our

robustness checks, in our main analysis we instead use a measure of innovation the proxies the

marginal value of a firm’s innovative activity in a given year. Specifically, Kogan et al. (2015) –

henceforth KPSS – propose that the marginal value of a firm’s innovation can be proxied by the

change in stock returns when a firm patents a new idea.13 We use their measure to construct an

estimate of qt at the firm-year level, as well as for the entire economy.

We first measure the total dollar value of innovation produced by a given firm f in year t by

simply summing the estimated values for all patents qj that were granted to the firm during that

year,

q̂f,t =
∑
j∈Pf,t

qj , (36)

where Pf,t denotes the set of patents issued to firm f in year t. In the context of our model, (36)

can be interpreted as the sum of the net present values of all projects acquired by firm f in year

t. Since larger firms tend to produce more patents, we follow KPSS and construct our firm-level

innovation measure as

ξf,t =
q̂ft
Bft

, (37)

12We could extend the model to allow for cross-sectional heterogeneity in the value of new projects, for example by
allowing for a match-specific component to the embodied shock ξ. If this heterogeneity was persistent across firms,
the level of the surplus created by the firm-executive match – and hence the level of executive pay – would vary with
it. Allowing for such heterogeneity would likely improve the quantitative performance of the model in matching the
data. We choose not to pursue this extension to keep the model parsimonious.

13Kogan et al. (2012) estimate the net present value of a patent as the change in the dollar value of the firm
around a three-day window after the market learns that the firm’s patent application has been successful. Kogan
et al. (2012) allow for movements in stock returns around the announcement window that is unrelated to the value
of the patent. They construct a filter of the estimated patent value using specific distributional assumptions, and
propose a methodology to empirically estimate those parameters using high-frequency data. Even though the dollar
reaction around the issue date understates the dollar value of a patent by an amount that is proportional to the
likelihood that the patent application is unsuccessful. This probability is not small; the likelihood that a patent
application is successful is approximately 56% in the 1991-2001 period (see Carley, Hegde, and Marco, 2014). Relative
to other measures of innovation – such as patent citations – the stock market reaction to patent grants has the unique
advantage of allowing us to infer the economic – as opposed to the scientific – value of the underlying innovations.
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where Bf,t is firm size (book assets). We later show that normalizing (37) by the market value of

equity leads to very similar results.

While the KPSS measure arguably captures the marginal (as opposed to the average) value

of new investment opportunities, it does have some important limitations. First, we have no

information on innovations that are not patented. Moreover, we cannot observe the value of patents

issued to private firms. Thus, we also analyze the relationship between executive pay and more

standard measures of growth opportunities, such as Tobin’s Q and the rate of investment in physical

assets.

Executive pay and firm innovation

We examine the relationship between executive pay and the value of new investments using the

following specification

logXft = a+ b ξf,t + cZft + εft (38)

where X is the mean executive pay in firm f at time t and vf,t is defined in (37). Depending on

the specification, the vector of controls Z includes log size (measured by book assets, as a way to

control for the value of existing assets), profitability (ROA, defined as net income to assets), the

firm’s stock return, time, and industry or firm fixed effects. We cluster the standard errors by firm.

We also replicate our analysis in data simulated from the model. To facilitate comparisons between

the data and the model, we scale ξf,t to unit standard deviation.

Equation (38) maps closely to the model. In our framework, executive pay is given by equa-

tion (29). The compensation of executives varies over time based on fluctuations in the level output

Yt and the marginal value of new investments qt. In the cross-section, the variation in executive

pay is related to the likelihood that the firm-executive match is of high quality pf,t – which would

imply that the firm is more likely to acquire new projects. As long as these beliefs are rational, the

likelihood of a good-quality match should be related to the ex-post realization of the total value of

acquired projects that is captured by (36).

We use two samples to estimate equation (38). First, we use the long panel data from Frydman

and Saks. The long time-series provides more variation over time, including periods of high and low

average pay, as well as periods of compression and increased dispersion in inequality. Moreover,

the degree of innovative activity as also changed more significantly over the long run. However,

a disadvantage of these data is that they only cover a small number of firms and provide very

limited industry variation. Thus, we also examine the relationship between pay and investment

opportunities using the larger panel based on Execucomp, which covers a shorter time period

(1992-2010). To mitigate the impact of outliers, we winsorize the data at the 1 percent level. In the

large panel (Execucomp) we compute breakpoints every year, while in the long sample we follow

Frydman and Saks (2010) and compute breakpoints over the entire sample period.
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We present the results in Table 4. Examining panels A and B, we see that executive pay is

strongly related to the marginal value of new projects across specifications and in both samples, even

after controlling for firm size. The point estimates are economically significant. Absent any controls,

column (1) shows that a one standard deviation increase in ξf,t is associated with increase in mean

executive pay at the firm level that ranges between 14 percent to 24 percent. After including all

controls and fixed effects, the estimated effects are reduced to 4-8 percent. But the magnitude of

these estimates is still sizable relative to the cross-sectional dispersion in top executive pay, which

ranges from 39 percent to 98 percent, on any given the year in the long sample. Thus, our results

indicate that the variation in firm growth opportunities can account for significant heterogeneity in

the level of executive pay across firms.

Panel C of Table 4 replicates the analysis in simulated data from the model. We see that the

results in simulated data from the model are quantitatively comparable to the data. Since these

correlations do not form part of the moments we used to estimate this model, we view them as out

of sample evidence supportive of our calibration.

Executive pay and other measures of growth opportunities

To further validate our findings, we explore the robustness of our results to two alternative

measures of growth opportunities that are more common in the literature: the firm’s realized

investment rate (defined as capital expenditures as a ration of lagged property, plant and equipment—

PPE) and the firm’s Tobin’s Q (defined as the sum of the market value of equity plus book value of

debt minus inventories and deferred taxes, divided by lagged PPE). In addition, we also construct

an index of firm growth opportunities by taking the first principal component of the KPSS firm

innovation measure (scaled by book assets), Tobin’s Q and firm investment rate. The index weights

on these three variables are 0.415, 0.682 and 0.603, respectively, and the first principal component

accounts for approximately half of the total variation. Since the Frydman-Saks data do not contain

information on investment rates, we perform this analysis only in the Execucomp sample.

Table 5 presents the estimates for equation (38) using these three alternative proxies of ξf,t.

Relative to the KPSS measure, the magnitudes of our estimated effects are generally larger, and the

estimates are statistically significant. For example, when we include all controls in column (5), we

find that a one standard deviation increase in these three measures of growth is associated with an

8 percent to 27 percent increase in executive compensation, which accounts for a significant fraction

of the variation in executive pay across firms.

We usually find the largest estimated effects for Tobin’s Q. As we mention before, Tobin’s Q is

an imperfect measure of growth opportunities since it partly reflects the profitability of existing

assets. Our regressions do control for ROA to capture the profitability of installed capital. To the

extent that ROA only imperfectly measures profitability, our estimates for Tobin’s Q will be biased.

To address this concern, we use changes in the investment tax credit (ITC) as an instrument for
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changes in the firm’s growth opportunities.14 We follow Cummins, Hassett, Hubbard, Hall, and

Caballero (1994) and Edgerton (2010) in using the variation in the tax treatment of different kinds

of assets to identify the impact of ITC on investment opportunities. Changes in the effective price

the firm pays for new investment should affect the net present value of new investments, but it

should not directly impact the profitability of installed capital.15 Moreover, the ITC likely satisfies

the exclusion restriction since there is no clear reason why executive pay should respond to changes

in these rates at the industry level other than through their effect on the cost of new investment.16.

Since ITC varies at the industry level from 1962 to 1986, using this instrument requires of a large

dataset with sufficient industry variation in pay over this period. Neither the Frydman-Saks data

nor Execucomp are good candidates. Instead, we use the Forbes dataset containing realized CEO

pay from 1971 to 1992. Table 6 shows the distribution of the computed tax credit across firm years

for this sample. There is considerable variation in tax credit rates across firm-years: the standard

deviation of ITCI,t across firm-years is 2.8%. However, the bulk of that variation comes from the

time-series. The cross-sectional standard deviation of ITCI,t across firms ranges from 0.7% in 1970

to 1.1% in 1986 – and is zero afterwards since the investment tax credit was eliminated in that year.

To examine the impact of changes in firm growth opportunities on executive pay, we first present

a reduced-form version of equation (38) using the investment tax credit directly in place of ξf,t. We

then present the instrumented version of this equation, using Tobin’s Q as a measure of growth

opportunities instrumented by the investment tax credit.17 We report the reduced-form estimates in

Panel A of Table 7, while panels B and C present the first-stage and second-stage results, respectively.

Examining panel A, we note a statistically significant relation between the investment tax credit

rate that applies to firm f in year t and the pay of the firm’s CEO in that year. Our point estimates

suggest that a one percentage point increase in the investment tax credit would lead to a 4 percent

to 7 percent increase in executive pay, depending on the controls.

The first-stage results in panel B indicate that the investment tax credit also lead to statistically

significant and economically non-trivial variation in Tobin’s Q. Indeed, a one percentage point

14The investment tax credit was first introduced by the Revenue Act of 1962. Until it was eliminated in Tax Reform
Act of 1986, the ITC rates have been changed over time; the tax credit was repealed in 1969, reinstated in 1971,
increased in 1975, and modified in 1981. These changes have often affected investments in different assets classes
differentially in rather arbitrary ways. For example, the Tax Reform Act of 1986 changed the investment tax credit
available for trucks from 10 percent to 0, while it changed the ITC available for cars from 6 percent to 0.

15Indeed, Lyon (1989) finds that changes in firm value are positively related to the expected receipt of investment
tax credits. He argues that no evidence is found to support a relation between expected changes in the value of a
firm’s existing assets and changes in the firm’s market value.

16One possible concern is that changes in ITC may occur at a time in which labor income tax rates (which do
directly affect compensation) are also modified. Although this has not always been the case, some tax acts have
affected both types of rates. Yet changes in labor income tax rates do not vary with industry in the same matter than
ITC does, and so we would expect these changes to be controlled by the time-fixed effects in equation (38) Moreover,
Frydman and Molloy (2011) find that executive compensation did not respond much to changes in income tax rates
over this period

17We also experimented with using investment. However, as it is often found in the literature, the relation between
the investment tax credit and investment is quite weak contemporaneously, leading to first-stage estimates that were
not statistically different from zero in many cases. The relation between the ITC and firm investment becomes more
statistically significant at longer horizons.
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increase in the investment tax credit leads to an 8 percent increase in Tobin’s Q. The first-stage

F -statistics do not indicate that the instrument is weak. Panels C and D report results using OLS

and IV, respectively. Focusing on Column (5) that includes all controls, we find that the estimated

sensitivity of executive pay to changes in Tobin’s Q using the IV estimator is approximately five

times as large as the OLS estimates in the Forbes sample – though the IV coefficients are not very

precisely estimated.18 These results confirm our earlier findings, and suggest that the variation in

firm growth opportunities can account for a substantial fraction of the dispersion in executive pay

across firms.

Executive pay and future firm growth

Next, we examine the model’s prediction that executive pay should have a positive impact on

future firm growth. In our model, the level of executive pay varies across firms as a function of the

perceived match quality pf,t. Since beliefs about match quality are rational, they should also on

average predict future firm growth.

Analyzing the relationship between current levels of pay and future firm growth also allows us

to evaluate the predictions of the model without explicitly relying on measures of ex-ante growth

opportunities. To assess this relationship, we estimate the impulse response of growth in log firm

size y on log executive pay x using local projections (Jorda, 2005). Specifically, we estimate

log Yf,t+s − log Yf,t = at + aI +
L∑
l=0

bsl logXf,t−l +
L∑
l=0

csl log Yf,t−l + εf,t (39)

The coefficient bs0 captures the impulse response of yf,t+s on xf,t. We choose a lag length of L = 2.

Our specifications control for time and industry fixed effects. We cluster the errors at the firm

level to account for the overlapping observations and serial correlation in firm growth. Moreover,

we consider two measures of size – book assets and sales growth – that are also available in the

Frydman and Saks (2010) data. To make the connection between the model and the data clear, we

also estimate equation (39) in simulated data from the model. To facilitate comparison between the

data and the model, we standardize the level of executive pay to unit standard deviation.

We plot the estimated impulse responses bs0 in Figure 3 for horizons s of 1 to 5 years. Panels

A.i and A.ii show the estimated responses in the long sample of Frydman and Saks (2010) and the

large panel of Execucomp, respectively. We find that a one-standard deviation increase in executive

pay is associated with a 5-10 percent increase in firm size over the next 5 years. Panel B plots

the estimated responses in simulated data. The estimates in simulated data are qualitatively and

quantitatively similar to the data, which further validates our model.

18Most of the variation in the ITC occurs in the 1980’s. When we restrict the sample to 1980-91, which is when
most of the identification is coming from, we obtain similar results, though the difference between the OLS and IV
estimates is smaller; the IV estimates are approximately twice as the size of the OLS coefficients.
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3.2 Innovation and the dynamics of pay inequality

The empirical results in the previous section document that heterogeneity in firm growth

opportunities is economically significantly related to the heterogeneity in the level of executive pay.

These findings were identified using firm-level deviations from time trends. Given the attention that

aggregate trends in executive pay have attracted in the literature, in this section we change our

focus to examine the power of our mechanism in explaining the aggregate fluctuations in inequality

in executive pay, both across executives as well as between executives workers. In the next two

sections, we consider evidence from the aggregate economy using the long-run series from Frydman

and Saks (2010), and cross-industry evidence from Execucomp.

Long-run aggregate evidence

In our model, pay inequality is related to fluctuations in the state variable ω. Intuitively, this

variable represents the current level of investment opportunities in the economy – in other words,

the distance between the current level of the capital stock and a target level that depends on the two

technology shocks x and ξ. To examine our model’s ability to account for the aggregate dynamics

of pay inequality empirically, we need an empirical proxy for the state variable ω. We use four

observable variables that can be mapped directly to ω in our model and take the first principal

component. Doing so alleviates some of our concerns that measurement in any single variable may

drive our results.

First, we consider the aggregate estimated value of all patents issued to firms, normalized by

either aggregate output,

ξ1t =

∑
f∈Ft q̂ft
Yt

, (40)

or aggregate market capitalization

ξ2t =

∑
f∈Ft q̂ft
Vt

. (41)

as in Kogan et al. (2012). The marginal value of new investments, scaled by either output or the

value of the stock market are higher when investment opportunities are good – the level of the

technology frontier x and ξ is far from the current level of capital. We also consider the investment

to capital ratio, IKt; this ratio is increasing in ω, since when the capital stock is far from its target

level, the economy will allocate more resources to investment to narrow the gap.19 Finally, we also

consider the cross-sectional dispersion in firm investment rates, σt(if,t). In the model, increases in

the value of new projects magnify the differences in match quality across firms – and hence the

observed investment rates.

We denote the vector of observable variables related to ω by Zt = [ξ1t , ξ
2
t , IKt, σt(if,t)]. In

our model, all four of these variables are stationary. Moreover, Figure 4 shows that they are all

19More specifically, this ratio is equal to the ratio of investment to the replacement cost of capital, e−ξtKt, that
is, the cost of replacing the currently installed capital given the technology frontier today. When we construct the
equivalent of this ratio in the data, we use the current-cost estimates of non-residential fixed assets as the denominator.
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monotonically related to the state variable ω in the model. Motivated by these facts, we use the

long-run data on these four measures to construct an empirical proxy for ω. After constructing

the vector of variables Zt as described above, we extract the first principal component (which we

refer to as PC1) and use it as our empirical proxy for ω. Since information for some of these series

is not available prior to the beginning of Compustat in the mid-1950s, we use probabilistic PCA

analysis.20 The estimated principal component loads positively on all variables in Z, and accounts

for approximately 74% of the realized variance of the variables in Z.

The top row of Figure 5 plots our empirical proxy for ω (PC1) and the long-run trends in

inequality in executive pay using the Frydman-Saks data. The dashed line in the left panel presents

the earnings gap between executives and workers, defined as the ratio of the average total executive

pay relative to average worker earnings. Overall, this measure of inequality exhibits a J-shaped

pattern over the twentieth century: after a sharp decline in the 1940s, the earnings gap continued

to compress at a slower rate until the 1970s.21 Starting the the 1980s, the real level of executive pay

has grown at a more rapid pace than the earnings of the average worker. By the end of the sample

in the early 2000s, the average top executive earned about 135 times more than the average worker

in the economy, about 2.25 times the level of inequality in the late 1930s.22

The dashed line in the right panel of Figure 5 shows the cross-sectional dispersion in executive

pay across firms, defined as the cross-sectional standard deviation of average firm-level pay in each

year. The dispersion in pay was relatively high in the beginning of the sample. Dispersion declined

during the war period, remained stable until the 1970s, and increased substantially after the 1980s.

In 2000, the peak of between-executive inequality in our sample, the standard deviation of log

executive pay was equal to 1.02, more than twice than it was in the 1940s.

In both panels, the solid line presents the empirical proxy for ω (PC1). As a further validation

of this proxy, it is important to know that PC1 lines up with the three major waves of technological

innovation in the U.S. First, our series suggests high values of technological innovation in the 1930s,

consistent with the evidence from Field (2003), and Alexopoulos and Cohen (2009, 2011). This

measure also suggest that innovation was high during 1960s and early 1970s, as argued by (see,

e.g. Laitner and Stolyarov, 2003).23 Finally, developments in computing and telecommunication

produced an important wave of technological progress in the 1990s and 2000s, which also coincides

with the high values of our empirical proxy for ω.

The top two panels in the Figure reveal that both measures of pay inequality share some common

fluctuations with PC1 over the sample period. First, the overall correlation between PC1 and

the two pay inequality series are relatively high—about 46 percent and 71 percent, respectively.

20Probabilistic PCA allows for missing observations, and estimates the principal component using maximum
likelihood in a latent variable model. See Roweis (1998) and Tipping and Bishop (1999) for more details.

21The average level of executive pay declined significantly during War World II. Frydman and Molloy (2012) attribute
much of this contraction to the growing power of unions and the decline in the returns to firm size.

22Changes in industry composition over time do not appear to drive this J-shaped pattern. For example, restricting
the sample to manufacturing firms leads to very similar trends in average pay over time.

23Indeed, these decades saw important developments in chemicals, oil and computing.
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Moreover, pay inequality and PC1 exhibited similar declines during the 1940s, and increased sharply

during the 1990s and 2000s. However, inequality remained mostly flat during the 1960s and 1970s,

whereas our proxy for ω shows an increase in investment opportunities during this period.

The decoupling between investment opportunities and pay inequality at the aggregate level

for some periods should not be surprising. Indeed, the U.S. economy witnessed some important

structural and institutional transformations during the twentieth century that are outside of our

model, which likely had a large impact on executive pay and the dispersion in earnings at low

frequencies. These forces include, for example, changes in taxes (Frydman and Molloy, 2011;

Piketty et al., 2014), the generality of executive skills (Murphy and Zabojnik, 2010; Frydman, 2015),

regulation (Murphy, 2013), strength of labor unions (Frydman and Molloy, 2012), changes in the

supply of executive talent, and changes in corporate governance (Holmstrom and Kaplan, 2003).

Also, our empirical proxies for ω could be affected by a broadening of the stock market or changes in

the composition of the set of publicly traded firms. While our model may be too simple to capture

some of the changes in inequality that occur over very low frequencies, next we analyze whether it

has more predictive power for medium-run fluctuations.

To do so, we filter the fluctuations in investment opportunities and in inequality in executive

pay using a band-pass filter. Motivated by the work of Comin and Gertler (2006), who show the

existence of medium-run cycles that are plausibly related to technological innovation, we restrict

attention to frequencies of 5 to 50 years. We plot the filtered series in the bottom row of Figure 5.

We see that the correlation between the filtered series is fairly substantial – the correlation of our

proxy for ω with the series on executive-worker inequality is 83 percent, and with the cross-sectional

dispersion in pay is 62 percent.

Industry-level Evidence

The aggregate evidence presented in the previous section suggests that fluctuations in inequality

are related to fluctuations in the level of investment opportunities in the economy over the long

run, at least for medium-run frequencies. Though our results show that technological change is

one important contributor of these trends, clearly other factors that are not incorporated in our

model have also affected the long-run trends in executive pay at the aggregate level. To provide

further evidence that technological innovation and managers’ ability to identify new projects are

an important component of this process, next we examine the relationship between executive pay

inequality and growth opportunities at the industry level. A main benefit of performing cross-

industry comparisons is that it allows us to ‘difference out’ aggregate factors (such as changes in

the bargaining power of managers due to changes in the power of labor unions) that affected all

industries in a similar manner.

To study disparities in pay between executives and workers across industries, we resort to the

large sample but short horizon in the Execucomp data. We measure the average pay of workers at

the industry level data across 12 broad sectors using the classifications from the Bureau of Labor
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Statistics (BLS). We measure inequality as the the mean level of the average pay of each firm’s top

executive teams in each industry, scaled by the average annual worker earnings in that industry

(calculated by multiplying weekly earnings by 52). We measure inequality among executives as the

cross-sectional standard deviation of log firm-level executive pay of all firms in industry I in year

t. We plot the time-series of these two measures of pay inequality for these 12 sectors – in dashed

lines – in Figures 6 and 7, respectively. Two main patterns are worth mentioning. First, there is

considerable time-series variation in both the level and the dispersion of pay across industries. The

inequality series in each industry peak at different times for different industries, and the differences

in the level of inequality across industries persist over time. Second, there is considerable correlation

between these two inequality series (67%) at the industry level. This correlation is not driven by

invariant industry characteristics or time effects; removing industry- and year-dummies increases

this correlation only slightly at 73%, with a t-statistic of 5.9. Hence, just like in the aggregate data,

there is considerable comovement between the level and the dispersion in industry pay.

Next, we analyze whether the sectoral differences in these two measures of executive pay

inequality are related to the availability of growth opportunities. As in the previous section, we

consider the same four proxies for the current state of investment opportunities in an industry – the

vector Z – as well as the first principal component. The only difference is that, in place of aggregate

output, we use firm sales as the denominator of ξ1. We compute industry-level equivalents of ξ1

as the ratio of the sum of all patents at all firms in the industry divided by the sum of all sales of

firms in industry I. We compute ξ2 and IKt accordingly; σ(i) is computed as the cross-sectional

dispersion of firm investment rates in industry I in year t. The solid lines in Figures 6 and 7 plot

the first principal component of these series, as our preferred industry-specific measure of growth

opportunities.

We estimate the following specification,

logPI,t = aI + at + bGI,t + c log ȲI,t + εI,t, (42)

where PI,t are measures of pay inequality GI,t are measures of industry-level growth opportunities;

at and aI are time and industry dummies, respectively; and ȲI,t is the average size of firms in

industry I at time t measured by sales – we use sales since it appears in the denominator of ξ1; using

instead market capitalization (or book assets) as measures of size leads to quantitatively similar

results. To compare economic magnitudes, we standardize G and log Ȳ to unit standard deviation.

We compute clustered standard errors at the industry level.

We report our estimates in Table 8. The estimated effects are statistically significant, and

suggest that the relationship between pay inequality and investment opportunities at the industry

level is economically meaningful. For example, a one-standard deviation increase in the level of

investment opportunities is associated with a 9 to 19 percent increase in the level of inequality

between executives and workers (see Panel A). These are sizable magnitudes relative to the standard
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deviation of (log) inequality, which is 56.9 percent in this sample. Similarly, the results in Panel B

show that an increase in one-standard deviation in the industry’s growth opportunities is associated

with a 3 to 6 percent increase in the cross-sectional dispersion in executive pay, which accounts for

a substantial fraction of its unconditional volatility during that period of 14.5 percent. Comparing

the first and second rows of each panel, we find that the estimated relationship between inequality

and growth opportunities is comparable in magnitude to the association between pay inequality

and average firm size.

We conclude that fluctuations in the level of investment opportunities in the economy can

account for a significant fraction of fluctuations in pay inequality – both over time as well as across

industries. This finding complements an extensive literature on executive pay that focuses on the

relationship between firm size and compensation. Our analysis suggests that using measures of firm

size that reflect only the value of existing assets (such as assets or sales) or that confound the value

of existing assets with those of growth opportunities (such as market value), provide only a partial

view of the determinants of pay. If one of the main roles of top executives is to identify new projects

that foster future firm growth, our paper suggests that executive compensation and pay inequality

will depend as well on the improvements in technology–a factor that has not been received much

attention thus far by the literature on executive pay. Technological change is likely to be one of the

main challenges facing large corporations in years to come; our study suggests that it will likely

have large impacts on executive pay as well.

4 Conclusion

We argue that the level and the dispersion in executive pay fluctuates following technological

improvements, especially when these improvements are embodied in new vintages of capital. We

develop a general equilibrium model in which executives add value to the firm not only by partici-

pating in production decisions, but also by identifying new investment opportunities. The economic

value of these two distinct components of the executive’s job varies over time as the technology

frontier improves. Improvements in technology that are specific to new vintages of capital raise the

skill price of discovering new growth prospects – and thus raise the compensation of executives

relative to workers. When managerial skills primarily consist of their ability to find new projects,

dispersion in executive pay across managers and relative to workers will also rise with technological

innovation. Improvements in technology that affect all vintages of capital instead increase the value

of both skills – as well as worker wages – and thus have a much smaller impact on pay inequality.

Our model delivers testable predictions about the relationship between executive pay and

growth opportunities that are quantitatively consistent with the data. We document that (1)

executives are paid more in firms with more growth opportunities; (2) medium-run fluctuations

in the aggregate time series in executive pay inequality are correlated with aggregate measures of
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growth opportunities; and (3) industries that have higher growth opportunities also experience an

increase in the level and in the dispersion in executive pay.

Our study opens up several avenues for future research. While we posit that top executives have

two types of skills, we do not provide any direct evidence that managers vary in their ability to

manage assets in place and to identify new valuable projects. A fruitful extension of our analysis

would be to identify managerial characteristics that are plausibly related to their ability to identify

new investment opportunities for a given firm, and to examine the correlation of these characteristics

with executive pay. Further, our model of managerial turnover is fairly stylized. Future work could

extend the model to allow for ex-ante managerial heterogeneity, and examine how the selection

of new executives varies with firm characteristics or with the state of the economy. Finally, our

model has little to say about the structure of executive pay. Embedding a moral hazard friction

into our setting could deliver rich implications about how managerial incentives should vary with

firm characteristics.
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Appendix

A. Proofs and Derivations

First, we consider some of the equilibrium relations in order to gain intuition for the overall
structure of the solution. Define

ζj,t = uj,t e
ξτ(j) kj,t. (A.1)

and

Zt =

∫
Jt

eξs(j) uj,t kj,t dj. (A.2)

The labor hiring decision is static. The firm managing project j chooses Ljt as the solution to

πjt = sup
Ljt

[
ζφjt (extLjt)

1−φ −wt Lj,t

]
(A.3)

The firm’s choice

L?j,t = ζj,t

(
(1− φ) e(1−φ)xt

wt

) 1
φ

. (A.4)

After clearing the labor market,
∫
Jt Lj,tdj = 1, the equilibrium wage is given by

wt = (1− φ) e(1−φ)xt Zφt , (A.5)

and the choice of labor allocated to project j is

L?j,t = ζj,t Z
−1
t . (A.6)

Aggregate output of all projects equals

Yt =

∫
Jt

ζj,t e
(1−φ)xt Zφ−1t dj = e(1−φ)xt Zφt . (A.7)

The project’s flow profits are

πj,t = sup
Lj,t

[
ζφjt (extLj,t)

1−φ −wt lj,t

]
= ζjt φYt Z

−1
t (A.8)

Because firms’ investment decisions do not affect its own future investment opportunities, each
investment maximizes the net present value of cash flows from the new project. Thus, the optimal
investment in a new project j at time t is the solution to

qt ≡ sup
kj,t

Et

[∫ ∞
t

Λs
Λt

πj,s ds

]
− k1/αj,t = sup

kj,t

[
Pt kj,te

ξt − k1/αj,t

]
, (A.9)

where Pt is the time-t price of the asset with the cash flow stream exp(−δ(s− t))ps:

Pt = Et

[∫ ∞
t

Λs
Λt
e−δ(s−t) ps ds

]
. (A.10)

The optimal scale of each new project is then given by

k?t =
(
α eξt Pt

) α
1−α

. (A.11)
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Note that the solution does not depend on the identity of the firm, i.e., all firms, faced with an
investment decision at time t, choose the same scale for the new projects. The optimal investment
scale depends on the current market conditions, specifically, on the current level of the embodied
productivity process ξt, and the current price level Pt.

Using (A.11), we find that, the equilibrium value of a new project is equal to

qt = α
α

1−α (1− α)
(
eξt Pt)

) 1
1−α

. (A.12)

We thus find that the aggregate stock of quality-adjusted installed capital in the intermediate
good sector, defined by (9), evolves according to

dKt =
(
−δ Kt + λ eξt k?t

)
dt =

(
−δ Kt + λ eξt

(
α eξt Pt

) α
1−α
)
dt, (A.13)

where λ is the aggregate rate of arrival of new projects. In deriving A.13, we have conjectured that
λ is constant, a fact we verify below.

An important aspect of (A.13) is that the growth rate of the capital stock Kt depends only
on its current level, the productivity level ξt, and the price process Pt. Furthermore, as we show
below, we can clear markets with the price process Pt expressed as a function of the state vector
Xt = (xt, ξt,Kt). Thus, Xt follows a Markov process in equilibrium.

We express equilibrium processes for aggregate quantities and prices as functions of Xt. For
instance, the fact that investment decisions are independent of u implies that Zt = Kt. Aggregate
investment It is given by

It = i(ωt)Yt = λ (k?t )
1/α = λ

α

1− αqt. (A.14)

where the third equality follows from (A.12). The aggregate consumption process satisfies

Ct = (1− i(ωt))Yt = Yt − It = Kφ
t e

(1−φ)xt − λ (k?t )
1/α . (A.15)

Prices of long-lived financial assets, such as the aggregate stock market, depend on the behavior of
the stochastic discount factor. In equilibrium, the SDF is determined jointly with the value function
of the households, as shown in Lemma ??. Below we fully characterize the equilibrium dynamics
and express Λt as a function of Xt.

Define the two variables

χt ≡ log Yt = (1− φ)xt + φ logKt, (A.16)

and
ωt ≡ ξt + α (1− φ)xt − (1− αφ) logKt. (A.17)

ωt and χt are linear functions of the state vector Xt. In Lemma 1 below, we characterize the SDF
and aggregate equilibrium quantities as functions of ωt and χt.

In the formulation of the lemma, we characterize the value function of a household, as well as
prices of financial assets, such as Pt in (A.10), using differential equations. Verification results,
such as (Duffie and Lions, 1992, Sec. 4), show that a classical solution to the corresponding
differential equation, subject to the suitable growth and integrability constraints, characterizes the
value function. Similarly, the Feynman-Kac Theorem (Karatzas and Shreve, 1991, e.g, Theorem
7.6) provides an analogous result for the prices of various financial assets. Because we solve for
equilibrium numerically, we cannot show that the classical solutions to our differential equations
exist and satisfy the sufficient regularity conditions. With this caveat in mind, in the following
lemma we characterize the equilibrium processes using the requisite differential equations.
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Lemma 1 (Equilibrium). Let the functions i(ω), v(ω), g(ω), h(ω) solve the following system of
four ordinary differential equations,

0 = φ(1− i(ω))−1 −
(
ρ+ λ1−αeω i(ω)α

)
v(ω) + v′′(ω)

1

2

(
σ2ξ + α2(1− φ)2σ2x

)
+ v′(ω)

(
µξ + α (1− φ)µx − (1− αφ)

(
λ1−αeω i(ω)α − δ

) )
(A.18)

0 =
i(ω)

1− i(ω)

1− α
λα

− ρ g(ω) + g′′(ω)
1

2

(
σ2ξ + α2(1− φ)2σ2x

)
+ g′(ω)

(
µξ + α (1− φ)µx − (1− αφ)

(
λ1−αeω i(ω)α − δ

) )
(A.19)

0 = (1− φ) (1− i(ω))−1 − ρ h(ω) + h′′(ω)
1

2

(
σ2ξ + α2(1− φ)2σ2x

)
+ h′(ω)

(
µξ + α (1− φ)µx − (1− αφ)

(
λ1−αeω i(ω)α − δ

) )
(A.20)

and the following algebraic equation(
i(ωt)

λ

)1−α
= α eω v(ω) (1− i(ω)) . (A.21)

Then we can construct price processes and individual policies that satisfy the definition 1, so
that Kt follows

dKt

Kt
= −δ dt+ λ eωt

(
i(ωt)

λ

)α
dt. (A.22)

Proof. We start with a conjecture, which we confirm below, that the equilibrium price process
Pt satisfies

Pt = K−1t eχt v(ωt) (1− i(ωt)) . (A.23)

Under this conjecture, the equilibrium aggregate value of assets in place is

Vt ≡ PtKt = eχt v(ωt) (1− i(ωt)) , (A.24)

the value of growth opportunities for the average firm (λf = λ) is

Gt ≡ λEt
∫ τ

t

Λs
Λt
qs dsλe

χtg(ωt) (1− i(ωt)) , (A.25)

and the aggregate value of human capital is

Ht = eχth(ωt) (1− i(ω)) . (A.26)

We then characterize the equilibrium SDF and the optimal policies of the firms and households,
and show that all markets clear and the above conjectures are consistent with the equilibrium
processes for cash flows and the SDF.

We denote the time-t net present value of the new projects (the maximum value in (A.12)) by
qt. The aggregate investment process, according to (A.14), is given by

It = λ
α

1− αqt. (A.27)

Using (A.27) and market clearing (A.14), Kt follows

dKt

Kt
=

(
−δ Kt + λ eξt

(
α eξt Pt

) α
1−α
)
dt = −δ dt+ λ eωt

(
i(ωt)

λ

)α
dt,
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where we have used (A.23), and (A.21) for the last equality. The equilibrium dynamics of the
aggregate quality-adjusted capital stock thus agrees with (A.22).

Optimality of household consumption and portfolio choices implies that the SDF

Λt = e−ρ tC−1t = e−ρ te−χt (1− i(ωt))−1 , (A.28)

where without loss of generality we have set Λ0 = 1. Also, it is helpful to define

πt ≡ eρ tΛt = e−χt (1− i(ωt))−1 . (A.29)

Next, we need to verify that, in equilibrium, the aggregate arrival of projects is constant. Using
lemma 3 below, we can write the value of an active match between an executive with perceived
talent pf,t and the firm by

vt(pf,t) = pftmt, where mt ≡ λD Et

∫ τ

t

Λs
Λt
qs ds, (A.30)

where τ is the stochastic time the match is dissolved. A firm will terminate its executive if the value
of the current match falls below the value of a new match, excluding training costs,

pftmt ≤ p̄mt − c p̄mt ⇒ pft ≤ p∗ ≡ (1− c) p̄. (A.31)

Since the firing threshold is constant and the stationary distribution of pf,t exists (see Lemma 2).
Hence, the equilibrium level of average executive-firm CEO matches,

λ ≡ λL + λD

∫ 1

p∗
pf,t df, (A.32)

is a constant.

We are now in a position to complete the proof by verifying that the conjectured price processes
in (A.23–A.26) are consistent with the equilibrium SDF above.

Lemma 2 (Stationary distribution for p). The process p has probability density f(p, t) that for
p ∈ (p∗, 1) solves

ft(t, p) = β
(

∆(p̄)− f(t, p)
)

+ λD p (1− p) fp(t, p) + (λL + p λD)

(
f
(
t,

p λH
λL + p λD

)
− f(t, p)

)
where ∆(p̄) is the Dirac delta function with point mass at p̄. At p = p∗ the process is reflected to p̄.

Assuming it exists, the stationary density solves the ODE

0 = β
(

∆(p̄)− f(p)
)

+ λD p (1− p) f ′(p) + (λL + p λD)

(
f
( p λH
λL + p λD

)
− f(p)

)
for p ∈ (p∗, 1), and once the process hits p = p∗ it is reflected to p̄ and

λ = λL + λD

∫ 1

p∗
p f(p) dp. (A.33)

Proof of Lemma 2. Lemma follows from a straightforward application of the Kolmogorov
Forward equation, taking into account the evolution of p under rational expectations – equation (14)
in the text – the fact that matches are exogenously dissolved at rate β or when p reaches the firing
threshold p∗.
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Lemma 3 (Value of Firm-Executive Match). Define the value of a match between a firm and an
executive with perceived talent pf,t as

m(pft, ωt, χt) ≡ πf,tEt
∫ τ

t
λD

Λs
Λt
qs ds (A.34)

where τ is the earliest of the exogenous or endogenous termination date, whichever comes first. In
equilibrium,

m(pft, ωt, χt) = pf,t λD e
χt g̃(ωt) (1− i(ωt)) , (A.35)

where g̃(ω) solves the following ODE,

0 =
i(ω)

1− i(ω)

1− α
λα

− (ρ+ β) g̃(ω) + g̃′′(ω)
1

2

(
σ2ξ + α2(1− φ)2σ2x

)
+ g̃′(ω)

(
µξ + α (1− φ)µx − (1− αφ)

(
λ1−αeω i(ω)α − δ

) )
. (A.36)

The termination threshold satisfies
p∗ = (1− c) p̄ (A.37)

Proof. Denote m̂(p, ω, χ) ≡ πm(p, ω, χ). We know that, in the region p ∈ (p∗, 1), that function
satisfies the following PDE

0 = p
i(ω)

1− i(ω)

1− α
λα

− (ρ+ β)m̂(p, ω, χ)− m̂p(p, ω, χ)p(1− p)λD

+ (λL + λDp)

(
m̂

(
p λH

λL + pλD
, ω, χ

)
− m̂(p, ω, χ)

)
+Dχ,ωm̂(p, ω, χ) (A.38)

where optimal firing decisions imply that at the firing threshold p∗ solves

m̂(p∗, ω, χ) = (1− c) m̂(p̄, ω, χ). (A.39)

Guess that
m̂(p, ω, χ) = p λD g̃(ω). (A.40)

Given our guess, equation (A.38) simplifies to the ODE in (A.36). Given the definition of m̂, we
have that

m(pft, ωt, χt) = pf,t λD e
χt g̃(ωt) (1− i(ωt)) , (A.41)

The last thing to check is that given our guess, the termination threshold exists and is given
by (A.37). Indeed,

p∗ λD eχt g̃(ωt) (1− i(ωt))− (1− c) p̄ λD eχt g̃(ωt) (1− i(ωt)) = 0. (A.42)

Lemma 4 (Executive Pay). The equilibrium level of executive pay (in excess of their compensation
for working in production) is given by

wf,t = η (pft − p∗)λD eχt i(ω)
1− α
λα

(A.43)

Proof. Define the surplus created from having a current CEO of quality pft is

Sf,t = m(pft, ωt, χt)− (1− c)m(p̄, ωt, χt)

= (pf,t − p∗)λD eχt g̃(ωt) (1− i(ωt)) . (A.44)
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Executives capture fraction η of the surplus; hence the present value of CEO pay is η Sf,t. Suppose
that the firm promises the CEO a flow rate w. Let the CEO’s continuation value be Wt; the wage
flow satisfies

πtWt = Et

∫ τ

t
e−(ρ+β)(s−t)πswsds (A.45)

where τ is the endogenous termination date. Given our assumptions, we need that this promised
value satisfies Wf,t = η Sf,t. The fact that the discounted gains process associated with Wt is a
martingale implies that

0 = π w − (ρ+ β)πW + η (p− p∗)λD
[
g̃′′(ω)

1

2

(
σ2ξ + α2(1− φ)2σ2x

)
+g̃′(ω)

(
µξ + α (1− φ)µx − (1− αφ)

(
λ1−αeω i(ω)α − δ

) )]
(A.46)

0 = π w − η (p− p∗)λD
[

i(ω)

1− i(ω)

1− α
λα

]
(A.47)

where in the last equality we have used the fact that πW = ηπS and that g̃ solves (A.36). To
obtain (A.43) in the text, we can use (A.14) to replace the investment to output ratio i(ωt) in (A.43)
with the value of investment opportunities qt.

Appendix B: Data

Aggregate consumption: We use the Barro and Ursua (2008) consumption data for the United
States, which covers the 1834-2008 period. We compute the estimate of long-run risk using the
estimator in Dew-Becker (2014). We thank Ian Dew-Becker for sharing his code.

Aggregate investment and output: Investment is non-residential private domestic investment.
Output is gross domestic product. Both series are deflated by population and the CPI. Data on the
CPI are from the BLS. Population is from the Census Bureau. The aggregat einvestment rate is
constructed as the ratio of non-residential investment to the current cost of private non-residential
fixed assets (Table 4.1, row 1). Data range is 1927-2010.

Dividends and payout: Moments of net payout to assets are from Larrain and Yogo (2008) who
use flow of funds data. Data range is 1929-2004. We compute the growth in dividends per share
based on the differences between the return with dividends and without dividends of the CRSP
value-weighted portfolio, see Hansen, Heaton, and Li (2005), among others, for more details. Data
range for dividends per share is 1927-2010.

Firm Investment rate, Tobin’s Q and profitability: Firm investment is defined as the change
in log gross PPE. Tobin’s Q equals the market value of equity (CRSP December market cap) plus
book value of preferred shares plus long term debt minus inventories and deferred taxes over book
assets. Firm profitability equals gross profitability (sales minus costs of goods sold) scaled by book
capital (PPE). When computing correlation coefficients, we winsorize the data by year at the 1%
level to minimize the effect of outliers. We simulate the model at a weekly frequency, dt = 1/50 and
time aggregate the data at the annual level. In the model, we construct Tobin’s Q as the ratio of
the market value of the firm divided by the replacement cost of capital using end of year values.
Replacement cost is defined as the current capital stock adjusted for quality, K̂ft = e−ξtKft . The

investment rate is computed as Ift/K̂ft−1, where Ift is the sum of firm investment expenditures

in year t and K̂f,t−1 is capital at the end of year t− 1. Similarly, we compute firm profitability as

pZ,tZf,t/K̂f,t−1, where pZ,tZf,t is the accumulated profits in year t and K̂f,t−1 is capital at the end
of year t− 1. Data range is 1950-2010.
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Risk-free rate moments: We use the reported estimate from the long sample of Barro and Ursua
(2008) for the United States and cover the 1870-2008 sample (see Table 5 in their paper). In the
data, the risk-free rate is the return on treasury bills of maturity of three months or less. The
reported volatility of the interest rate in Barro and Ursua (2008), which equals 4.8%, is the volatility
of the realized rate. Hence it is contaminated with unexpected inflation. We therefore target a
risk-free rate volatility of 0.7% based on the standard deviation of the annualized yield of a 5-year
Treasury Inflation Protected Security (the shortest maturity available) in the 2003-2010 sample. In
the model, rf is the instantaneous short rate; and RM is the return on the value-weighted market
portfolio. We simulate the model at a weekly frequency, dt = 1/50 and time aggregate the data at
the annual level.

Executive Compensation We use the ex-ante value of executive compensation, which includes
the Black-Scholes value of granted options. The historical data come from Frydman and Saks
(2010). We compute firm-level compensation by computing the average compensation in a given
year of the top-3 executives. The large panel data come from Execucomp, where we use tdc1. We
compute firm-level compensation by computing the average compensation in a given year of the
top-5 executives.

Investment Tax Credit We construct industry-level estimates of the effective investment tax
credit based on the type of equipment each industry uses. We use data provided by Dale Jorgenson
and Jesse Edgerton on investment tax credits for each asset type. We match these variables to
the 1982 Capital Flows table from the Bureau of Economic Analysis, which records the amount of
investment made by each industry in each asset category. We construct investment tax credit rates
at the industry level by taking a weighted average across the assets purchased by each industry,
with the weights equal to the percentage of the industrys spending accounted for by each asset.

Industry-level measures of pay inequality We construct industry-level estimates of pay in-
equality using data from Execucomp and the Bureau of Labor Statistics (BLS). Inequality between
executives and workers is constructed using the mean (or median) level of firm-level executive
pay in each industry, scaled by the average weekly earnings in that industry (times 52). The
sectoral definitions are from the BLS, and include Manufacturing (NAICS 31-33), Construction
(NAICS 23), Mining and logging (NAICS 21 and 1133), Durable goods (NAICS 321,327,331-337,339),
Nondurable goods (NAICS 311-316,322-326), Wholesale trade (NAICS 42), Retail trade (NAICS
44-45), Transportation and warehousing (NAICS 48-49), Utilities (NAICS 22), Information (NAICS
51), Professional and business services (NAICS 54-56), Education and health services (NAICS
61-62), and Leisure and hospitality (NAICS 71-72)
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Tables

Table 1: Model: Goodness of Fit

Statistic Data
Model

Mean RDev2 (5%) (95%)

Aggregate quantities and prices
Consumption growth, mean 0.015 0.016 0.004 0.004 0.027
Consumption growth, volatility 0.036 0.042 0.028 0.036 0.048
Consumption growth, long-run volatility 0.041 0.053 0.075 0.032 0.075
Investment, mean share of output 0.089 0.093 0.002 0.052 0.132
Investment, volatility 0.130 0.098 0.060 0.075 0.124
Investment and consumption, correlation 0.472 0.384 0.035 0.192 0.558
Net payout to assets, coefficient of variation 0.575 0.587 0.000 0.339 0.893
Risk-free rate, mean 0.020 0.015 0.055 0.007 0.027
Risk-free rate, std 0.007 0.006 0.009 0.002 0.014

Executive pay and inequality
CEO tenure (years), mean 5.800 4.936 0.022 4.723 5.102
Elasticity of executive pay to firm size 0.350 0.405 0.025 0.224 0.515
Dispersion in log CEO pay 0.553 0.493 0.012 0.336 0.611
Dispersion in log CEO, log, TS std 0.229 0.152 0.112 0.070 0.327
Mean CEO pay to worker, log, TS mean 3.708 3.708 0.000 3.297 3.993
Mean CEO pay to worker, log, TS std 0.466 0.148 0.464 0.087 0.231

Cross-sectional (firm) moments
Firm investment rate, IQR 0.175 0.222 0.073 0.175 0.273
Firm investment rate, serial correlation 0.223 0.118 0.222 0.004 0.260
Firm investment rate, correlation with Tobin’s Q 0.237 0.246 0.001 0.159 0.369
Firm Tobin’s Q, IQR 1.139 0.871 0.055 0.604 1.225
Firm Tobin’s Q, serial correlation 0.889 0.951 0.005 0.913 0.978
Firm profitability, IQR 0.902 1.041 0.024 0.868 1.400
Firm profitability, serial correlation 0.818 0.795 0.001 0.772 0.808

Distance criterion (mean of Rdev2) 0.0574

This table reports the fit of the model to the statistics of the data that we target. Growth rates and rates of return are
reported at annual frequencies. See main text for details on the estimation method and Appendix B for details on the
data construction. We report the mean statistic, along with the 5% and 95% percentiles across simulations. We also
report the squared relative deviation of the mean statistic to their empirical counterparts, Rdev2i = (Xi−Xi(p))2/X2

i .
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Table 2: Parameter Estimates

Parameter Symbol Estimate SE

Executive Labor Market
Executive share of match surplus η 0.4965 0.4709
Worker effective supply of labor h 0.0052 0.0006
Executive excess effective supply of labor e 0.0882 0.0521
Proportional termination cost c 0.7500 0.0402
Unconditional match quality p̄ 0.0973 0.0253
Involuntary turnover rate β 0.0285 0.0113

Technology, Preferences and Production
Subjective discount rate ρ 0.0015 0.0016
Decreasing returns to investment α 0.3096 0.0981
Depreciation rate δ 0.0300 0.0642
Disembodied technology growth, mean µx 0.0214 0.1214
Disembodied technology growth, volatility σx 0.0768 0.0142
Embodied technology growth, mean µξ 0.0014 0.1210
Embodied technology growth, volatility σξ 0.1584 0.0367
Project mean arrival rate, low quality match λL 0.0539 0.0265
Project mean arrival rate, difference high vs low quality match λD 0.6835 0.0266
Project-specific productivity, long-run volatility vu 1.8471 3.6391
Project-specific productivity, persistence κu 0.2457 0.0369

This table reports the estimated parameters of the model. When constructing standard errors, we approximate the
gradient ∂X (p)/∂p using a five-point stencil centered at the parameter vector p̂.
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Table 3: Summary Statistics: Firm-level Data

Variable Mean SD p10 p25 p50 p75 p90

A. Long sample (1936-2005)

Exec. Compensation (log 1982 $m) 0.22 0.70 -0.56 -0.28 0.10 0.60 1.18
Compensation to Assets (%) 0.02 0.02 0.00 0.01 0.01 0.02 0.04
Book assets (log 1982 USDm) 9.22 1.23 7.70 8.42 9.14 10.00 10.80
Net Income to Assets 0.06 0.05 0.01 0.04 0.06 0.08 0.11
Stock Returns 0.10 0.27 -0.25 -0.06 0.12 0.26 0.42
Firm Innovation, v/B (%) 13.90 22.96 0.00 0.00 4.70 18.11 37.01

B. Forbes sample (1970-1991)

Exec. Compensation (log 1982 $m) 0.33 0.66 -0.42 -0.09 0.27 0.67 1.14
Compensation to Assets (%) 0.06 0.11 0.01 0.02 0.04 0.07 0.12
Book assets (log 1982 USDm) 8.22 1.10 6.88 7.49 8.18 8.93 9.63
Net Income to Assets 0.06 0.06 0.01 0.04 0.06 0.09 0.13
Stock Returns 0.11 0.34 -0.31 -0.07 0.13 0.32 0.50
Tobin’s Q (log) 0.08 1.06 -1.09 -0.63 -0.05 0.77 1.49

C. Large Panel (1992-2010)

Exec. Compensation (log 1982 $m) 0.44 0.89 -0.68 -0.21 0.37 1.03 1.63
Compensation to Assets (%) 0.21 0.30 0.02 0.05 0.11 0.24 0.48
Book assets (log 1982 USDm) 7.29 1.57 5.35 6.15 7.15 8.32 9.52
Net Income to Assets 0.04 0.12 -0.05 0.02 0.05 0.09 0.13
Stock Returns 0.19 0.62 -0.39 -0.14 0.11 0.39 0.78
Firm Innovation, v/B (%) 13.18 43.33 0.00 0.00 0.00 6.91 35.58
Tobin’s Q (log) 0.97 1.24 -0.51 -0.01 0.85 1.80 2.67
Investment Rate 0.16 0.19 0.04 0.07 0.11 0.19 0.33

Executive Compensation is the mean compensation of the top-3 managers (in the Frydman and Saks (2010) sample),

CEO (in the Forbes data) and top-5 managers (in Execucomp) across firm-years. The compensation data in the long

sample is from Frydman and Saks (2010) and includes the ex-ante value of options. The compensation data in the

Forbes sample only includes the ex-post (realized) option gains. Compensation data from compustat is TDC1. The

value of book assets (Compustat: at) and compensation is deflated to 1982 dollars using the CPI. The firm-level

innovation measure v/B is from Kogan et al. (2012). Tobin’s Q is defined as the market value of equity (based on

December market capitalization from CRSP) plus the book value of debt (Compustat: dltt) and preferred equity

(Compustat: pstkrv) minus inventories (Compustat: invt) and deferred taxes (Compustat: txdb) divided by property

plant and equipment (Compustat: ppegt). Industry definitions are based on the SIC2 level. Investment is CAPX

(Compustat: capx) scaled by lagged PPE (Compustat: ppegt). Stock returns are from CRSP. firm-year
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Table 4: Executive Pay and Firm Innovation

A: Data

logXf,t i: Long sample (1936-2005)

ν̂f,t/Bf,t 0.139*** 0.098*** 0.059*** 0.060*** 0.043*
(0.026) (0.019) (0.019) (0.019) (0.024)

logBf,t 0.302*** 0.305*** 0.306*** 0.317***
(0.019) (0.021) (0.021) (0.030)

log(1 +ROAf,t) 2.353*** 2.138*** 2.195***
(0.356) (0.362) (0.309)

log(1 +Rf,t) 0.162*** 0.166***
(0.026) (0.025)

Observations 4883 4883 4881 4869 4869
R2 0.883 0.917 0.921 0.922 0.940

logXf,t ii: Large panel (1992-2010)

ν̂f,t/Bf,t 0.236*** 0.106*** 0.105*** 0.104*** 0.078***
(0.014) (0.009) (0.009) (0.009) (0.008)

logBf,t 0.407*** 0.405*** 0.407*** 0.370***
(0.005) (0.005) (0.005) (0.012)

log(1 +ROAf,t) 0.234*** 0.117** 0.407***
(0.047) (0.047) (0.045)

log(1 +Rf,t) 0.113*** 0.079***
(0.009) (0.009)

Observations 28599 28599 28500 28467 28467
R2 0.243 0.598 0.600 0.603 0.769

Year FE Y Y Y Y Y
Industry (SIC2) FE Y Y Y Y -
Firm FE - - - - Y

logXf,t B: Model

ν̂f,t/Bf,t 0.194 0.161 0.161 0.178 0.103
(0.031) (0.021) (0.021) (0.023) (0.021)

logBf,t 0.414 0.414 0.414 0.601
(0.108) (0.108) (0.106) (0.132)

log(1 +ROAf,t) 0.026 0.064 0.041
(0.055) (0.058) (0.043)

log(1 +Rf,t) -0.931 -0.593
(0.376) (0.361)

Observations 30000 30000 30000 30000 30000
R2 0.217 0.465 0.465 0.467 0.721

Year FE Y Y Y Y Y
Firm FE - - - - Y

Panel A reports estimates of equation (38) in the text. See the notes to Table 3 for variable definitions. Panel

B reports estimates of equation (38) in simulated data from the model, using the benchmark parameter estimates

reported in Table 2.
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Table 5: Executive pay and other measures of growth opportunities

(1) (2) (3) (4) (5)

logXf,t A. Tobin’s Q

logQf,t 0.143*** 0.247*** 0.254*** 0.248*** 0.265***
(0.017) (0.009) (0.009) (0.010) (0.013)

logBf,t 0.439*** 0.442*** 0.443*** 0.350***
(0.005) (0.005) (0.005) (0.011)

log(1 +ROAf,t) -0.155*** -0.169*** 0.137***
(0.044) (0.044) (0.046)

log(1 +Rf,t) 0.031*** -0.006
(0.008) (0.008)

R2 0.202 0.633 0.635 0.635 0.783

logXf,t B. Firm Investment

if,t 0.045*** 0.128*** 0.128*** 0.125*** 0.078***
(0.010) (0.007) (0.007) (0.007) (0.007)

logBf,t 0.431*** 0.431*** 0.435*** 0.369***
(0.005) (0.005) (0.005) (0.012)

log(1 +ROAf,t) 0.153*** 0.083 0.363***
(0.051) (0.050) (0.048)

log(1 +Rf,t) 0.101*** 0.064***
(0.008) (0.008)

R2 0.190 0.606 0.608 0.612 0.775

logXf,t C. Index of Growth Opportunities (PCA)

Gf,t 0.195*** 0.236*** 0.237*** 0.231*** 0.187***
(0.014) (0.008) (0.008) (0.008) (0.009)

logBf,t 0.429*** 0.430*** 0.432*** 0.355***
(0.005) (0.005) (0.005) (0.011)

log(1 +ROAf,t) -0.038 -0.071 0.228***
(0.043) (0.043) (0.046)

log(1 +Rf,t) 0.056*** 0.037***
(0.008) (0.008)

R2 0.219 0.636 0.637 0.638 0.783

Observations 27541 27541 27448 27447 27447
Year FE Y Y Y Y Y
Industry (SIC2) FE Y Y Y Y -
Firm FE - - - - Y

Table reports estimates of equation (38) in the text using three alternative measures of growth opportunities: Tobin’s

Q (panel A), investment (panel B) and the first principal component across Q, investment rate and v/B (panel C).

See the main text and the notes to Table 3 for variable definitions.
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Table 6: Distribution of the Investment Tax Credit (ITC) across years

year Mean SD p10 p25 p50 p75 p90

1970 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1971 4.5 0.7 3.8 4.3 4.5 5.1 5.1
1972 4.4 0.7 3.6 4.2 4.5 5.1 5.1
1973 4.5 0.7 3.6 4.2 4.5 5.1 5.1
1974 4.5 0.6 3.9 4.3 4.5 5.1 5.1
1975 6.4 0.9 5.6 6.2 6.5 7.3 7.3
1976 6.4 0.9 5.6 6.2 6.5 7.3 7.3
1977 6.4 0.9 5.6 6.1 6.5 7.3 7.3
1978 6.4 1.0 5.6 6.1 6.5 7.3 7.3
1979 6.4 1.0 5.6 6.1 6.5 7.3 7.3
1980 6.5 0.9 5.6 6.1 6.5 7.3 7.3
1981 7.0 1.0 5.8 6.6 6.9 7.8 7.8
1982 6.9 1.0 5.8 6.6 6.9 7.8 7.8
1983 6.9 1.0 5.8 6.6 6.9 7.8 7.8
1984 6.9 1.0 5.8 6.6 6.9 7.8 7.8
1985 6.9 1.1 5.8 6.6 6.9 7.8 7.8
1986 6.8 1.1 5.8 6.6 6.9 7.8 7.8
1987 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1988 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1989 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1990 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1991 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table reports the distribution of the Investment Tax Credit across firms for the period 1970-1991 restricting the

sample to those for which we have compensation data from Forbes. We follow Cummins et al. (1994) and construct

industry-level estimates of the effective investment tax credit based on the type of equipment each industry uses.

We use data provided by Dale Jorgenson and Jesse Edgerton on investment tax credits for each asset type. We

match these variables to the 1982 Capital Flows table from the Bureau of Economic Analysis, which records the

amount of investment made by each industry in each asset category. We construct investment tax credit rates at the

industry level by taking a weighted average across the assets purchased by each industry, with the weights equal to

the percentage of the industrys spending accounted for by each asset.
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Table 7: Executive pay and growth opportunities: Using the ITC

(1) (2) (3) (4) (5)

logXf,t A. Reduced form

ITCI,t 0.062** 0.060*** 0.061*** 0.062*** 0.042**
(0.025) (0.023) (0.023) (0.023) (0.018)

logBf,t 0.246*** 0.267*** 0.269*** 0.293***
(0.014) (0.014) (0.014) (0.029)

log(1 +ROAf,t) 1.750*** 1.552*** 1.886***
(0.272) (0.271) (0.345)

log(1 +Rf,t) 0.160*** 0.138***
(0.027) (0.023)

R2 0.575 0.658 0.672 0.673 0.724

logQf,t B. First-stage

ITCI,t 0.061** 0.063** 0.064*** 0.065*** 0.065***
(0.028) (0.028) (0.024) (0.024) (0.024)

logBf,t -0.273*** -0.201*** -0.198*** -0.198***
(0.028) (0.029) (0.028) (0.028)

log(1 +ROAf,t) 6.092*** 5.685*** 5.685***
(0.944) (0.946) (0.946)

log(1 +Rf,t) 0.333*** 0.333***
(0.055) (0.055)

R2 0.129 0.231 0.376 0.385 0.385
Cragg-Donald Wald F 7.55 9.22 11.62 12.26 23.35

logXf,t C. OLS

logQf,t -0.001 0.119*** 0.076*** 0.070*** 0.155***
(0.022) (0.018) (0.019) (0.019) (0.021)

logBf,t 0.280*** 0.285*** 0.286*** 0.322***
(0.016) (0.015) (0.015) (0.029)

log(1 +ROAf,t) 1.396*** 1.267*** 1.786***
(0.273) (0.270) (0.355)

log(1 +Rf,t) 0.143*** 0.079***
(0.027) (0.024)

R2 0.570 0.666 0.672 0.673 0.734

logXf,t D. IV – ITC instruments for Tobin’s Q

logQf,t 1.018* 0.947* 0.940** 0.933** 0.733**
(0.579) (0.486) (0.459) (0.449) (0.365)

logBf,t 0.506*** 0.459*** 0.456*** 0.416***
(0.133) (0.094) (0.091) (0.075)

log(1 +ROAf,t) -3.864 -3.633 0.728
(2.927) (2.696) (0.722)

log(1 +Rf,t) -0.144 -0.145
(0.156) (0.142)

R2 -0.348 0.130 0.199 0.208 0.637

Observations 7498 7498 7498 7477 7385
Year FE Y Y Y Y Y
Industry (SIC2) FE Y Y Y Y -
Firm FE - - - - Y

Table reports estimates of equation (38) using the investment tax credit as an instrument for firm investment

opportunities. Panel A reports estimates of the reduced-form regression. Panels B and C report the first- and

second-stage estimates, respectively. See notes to Tables 3 and 6 for variable definitions.
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Table 8: Dynamics of pay inequality: cross-industry evidence

(1) (2) (3) (4) (5)

ξ1 ξ2 log I/K log σ(i) PC1

log
(
X̄I,t/w̄I,t

) A. Inequality between executives and workers
(mean executive to mean worker)

GI,t 0.130∗∗∗ 0.090∗∗∗ 0.166∗∗∗ 0.113∗∗∗ 0.191∗∗∗

(0.036) (0.022) (0.045) (0.028) (0.041)

log ȲI,t 0.344∗∗∗ 0.317∗∗∗ 0.180∗ 0.268∗∗∗ 0.283∗∗∗

(0.071) (0.081) (0.091) (0.075) (0.062)

R2 0.905 0.895 0.912 0.903 0.917

log σI,t (X)
B. Inequality among executives

(dispersion in executive pay)

GI,t 0.035∗∗∗ 0.029∗∗∗ 0.048∗ 0.055∗∗∗ 0.063∗∗

(0.011) (0.008) (0.022) (0.014) (0.022)

log ȲI,t 0.081∗∗ 0.075∗ 0.035 0.053∗ 0.063∗

(0.035) (0.035) (0.037) (0.028) (0.029)

R2 0.659 0.652 0.671 0.692 0.689

Observations 228 228 228 228 228
Fixed Effects I,T I,T I,T I,T I,T

Table reports estimates of equation (42), where we regress industry level pay inequality on industry-level measures of

investment opportunities. In column (1) we use the Kogan et al. (2012) innovation measure at the industry level –

which is equal to the sum of the value of patents issued to all firms in industry I at time t scaled by total sales in

industry I at time t. In column (2) we scale the value of patents by the market value of all firms in industry I. In

column (3) we use the industry level investment rate, constructed as the sum of capital expenditures of all firms in

industry I at time t divided by the sum of the capital stock (PPE) of all firms in the industry at time t. In column (4)

we use the cross-sectional dispersion of firm investment rates in industry I at time t. In column (5) we use the first

principal component of the first three measures. We construct industry-level estimates of pay inequality using data

from Execucomp and the Bureau of Labor Statistics (BLS). Inequality between executives and workers (Panel A) is

constructed using the mean level of firm-level executive pay in each industry, scaled by the average weekly earnings in

that industry (times 52). Inequality among executives is constructed using as the cross-sectional standard deviation

of log firm-level executive pay of all firms in industry I at year t. Firm-level pay is the firm-level average of the

compensation of the top-5 executives. See Appendix B for the industry definitions. All regressions include controls for

the average firm size (sales) in that industry; time (T) and industry (I) dummies. Standard errors are clustered at the

industry level.
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Figure 1: Four possible paths for perceived match quality
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Figure plots four possible paths for the perceived match quality pf,t (dashed line), conditional on the true quality of

the match λf,t (solid line). The dotted line plots the termination threshold p∗. The shaded and non-shaded regions

represent the tenure of different executives.
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Figure 2: Forces determining pay inequality
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Figure plots the steady-state distribution of pf,t in simulated data from the model. We obtain the steady state

distribution by simulating 1,000 firms for 1,000 years, and dropping the first half of the sample.
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Figure 3: Executive pay and future firm growth

A. Data

i. Long sample (1936-2005)
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ii. Large panel (1992-2010)
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B. Model
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Figure estimates of equation (39) in the long sample (panel A.i), the large panel (panel A.ii) and in simulated data

from the model (panel B).
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Figure 4: Model-implied proxies for ω

A. Model
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Figure plots the relation between various proxies for ω and the true state ω in simulated data from the model (Panel

A) and in the data (Panel B). The first two variables are the aggregate estimated value of all patents issued to firms,

normalized by either aggregate output (ξ1) or aggregate market capitalization (ξ2) based on Kogan et al. (2012).

The third variable is the investment to output ratio, It/Yt. Last, the fourth variables is the realized cross-sectional

dispersion in firm investment rates, σt(if,t).
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Figure 5: PC1 of model-implied proxies for ω vs Pay inequality

Median executive pay to worker Dispersion in executive pay
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Figure plots the relation between our empirical proxy for ω (the first principal component of the vector Zt =
[ξ1t , ξ

2
t , It/Yt, Qt, σt(qt), σt(if,t)]) versus pay inequality, see notes to table 4 for more details). The left panel plots PC1

versus the log ratio of median executive pay to worker; the right panel plots PC1 versus the realized cross-sectional
standard deviation of firm-level executive pay. The top panel plots the raw series, while the bottom panel plots the
band-pass filtered series, keeping frequencies of 5 to 50 years.
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