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Abstract
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1 Introduction

Over the past decade, the integration of machine learning (ML) models into financial re-

search has led to significant advances. Despite these advances, ML models suffer from a

lack of interpretability and theoretical foundation, limiting financial insight.1 Structural

models, in contrast to ML models, are inherently theory-driven. Despite the broad range of

methodologies that “structural models” encompasses, they share a core characteristic: they

are born from theory and are designed to offer explicit predictions and insights into the phe-

nomena they represent. This does not come without a cost though: while structural models

provide clear economic insights, it is not clear how to best estimate their parameters, let

alone how to incorporate the vast amount of conditioning information available to econome-

tricians. This apparent dichotomy between ML models and structural models naturally begs

the question: can we combine the two and keep the flexibility and predictive power of ML,

and the economic intuition and interpretability of structural models? As Giglio, Kelly, and

Xiu (2022) write: “...our view is that the most promising direction for future empirical asset

pricing research is developing a genuine fusion of economic theory and machine learning. It

is a natural marriage...”. This paper is an attempt to officiate such a wedding. I propose a

new model framework, Deep Structural Models (DSMs), that combine ML techniques with

structural models.

Figure 1 illustrates how the DSM framework works by showcasing three different ap-

proaches for modelling an object of interest, y: a deep learning model, a structural model,

and a DSM.2 When fitting the deep learning model to the data, we start from a point of

observing a set of variables, denoted by Xobs in the figure, that has some functional relation-

ship with y. We then rely on the deep learning model, represented by the black-box, to find

the functional relationship. In contrast, the structural approach relies on a set of estimated

parameters, denoted by θ̂, that feeds through an economic model to arrive at an estimate of

y. The estimation of θ̂ depends on the specific choice of structural model, but usually relies

1Machine learning has been successful in various predictive tasks within finance, yet it faces unique
challenges in this domain. Israel, Kelly, and Moskowitz (2020) provide an insightful discussion on these
issues.

2Deep learning models are a specific type of ML models that are ideally suited for the purposes of this
paper due to their flexibility in terms of customization and optimization. ML and deep learning will be used
interchangeably even though one is a subset of the other.
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on some sort of GMM, maximum likelihood, or simulation estimation. The DSM framework

combines the two approaches and models the parameters of a structural model as functions

of the observable data, i.e. y is now only indirectly a function of Xobs through θ̂. This allows

us to keep the ability of ML models to flexibly incorporate all observable information in the

estimation of y, while keeping the transparency of structural models. The DSM framework

can therefore be viewed as a flexible methodology for estimating the parameters of structural

models or, alternatively, as an economically motivated regularization of an ML model.

Xobs Black-Box

Deep Learning Models

ŷ

θ̂ White-Box

Structural Models

ŷ

Xobs Black-Box θ̂

Deep Structural Models

White-Box ŷ

Figure 1: Three Different Modelling Approaches. This figures illustrates the modelling approach
for three different types of models: deep learning models, structural models, and deep structural
models (DSMs). For all three types of models, the object or phenomenon of interest is represented
by y. Xobs refers to a set of observable variables, while θ̂ refers to a set of estimated parameters for
some structural model. The “Black-Box” represents a deep learning model that transforms Xobs

into an output, while the “White-Box” refers to the structurally determined transformation of θ̂
to an estimate of y.

The specific structural model examined in this paper is a modified version of the classic
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Merton (1974) model wherein the assets of the firm follow a geometric brownian motion

(GBM). The asset drift is the sum of the risk-free rate, a term representing mispricing,

and systematic risk compensation, while asset volatility contains a systematic and idiosyn-

cratic component. This model jointly estimates the conditional expected equity returns and

(co)variances and enables the analysis of the importance of mispricing relative to system-

atic risk compensation, as well as the effect of firm leverage on expected equity returns.

The GBM parameters are modelled as functions of 238 firm-specific characteristics and 45

macroeconomic variables, and the model is estimated on a comprehensive dataset of eq-

uity returns spanning 1950-2021 with around 3.2 million firm-month observations containing

23,422 unique firms. After fitting the model, I use analytically derived expressions for the

expected equity returns and (co)variances and find the following key results:

1. The Role of Mispricing. Systematic risk compensation is the largest contributor to

the average expected excess asset return, while mispricing is responsible for most of

the dispersion. Systematic risk compensation contributes 63.73% to the average excess

asset return, while mispricing only contributes 36.27%. The standard deviations of

the systematic risk compensation and mispricing parameters are 6.85% and 12.51%,

respectively.

2. The Role of Leverage. Firm leverage, rather than the underlying asset dynamics,

is responsible for an increased equity premium during recessions. The estimated asset

parameters are stable through recessions, yet the time series dynamics of leverage cause

the equity premium to increase. I find that the equity premium peaked at 15% during

the financial crisis of 2008-09.

3. Equity Return Prediction. The DSM provides more accurate firm-level estimates

of the expected equity return than existing state-of-the-art ML models. Different

specifications of the DSM provide out-of-sample R2-values in the range of 0.74-0.80,

compared to 0.56 for a neural network (NN) benchmark and -10.60 from a simple OLS

model.

4. Long-Short Portfolio Performance. The more accurate equity return predictions

from the DSM lead to better performing long-short portfolios. Portfolios based on the
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DSM predictions outperform the NN benchmark in terms of both excess returns and

annualized Sharpe ratios: the DSM portfolios have average monthly excess returns

(Sharpe ratios) in the range of 2.63-3.10% (1.43-1.67) compared to the NN benchmark

portfolio of 1.91% (1.08).

5. Variance Forecasting. The DSM estimates future firm-level equity return variances

better than a GARCH(1,1) model. The DSM variance forecasts has an out-of-sample

mean squared error that is 20.59%-21.27% lower than the GARCH benchmark. Re-

gression results confirm that the DSM predictions explain a higher proportion of the

variance with an R2-value of 0.53 compared to 0.50 for the GARCH benchmark.

6. Mean Variance Efficient Portfolios. Mean variance efficient (MVE) portfolios,

formed on the basis of the expected equity returns and covariance matrix, perform

even better than the long-short portfolios. I form both a leverage constrained and a

long-only MVE portfolio that are re-balanced on a monthly basis. The best performing

leverage constrained MVE portfolio achieves a monthly average excess return of 4.89%

with an annualized Sharpe ratio of 3.96, while the best performing long-only MVE

portfolio has a monthly average excess return and Sharpe ratio of 4.58% and 1.93,

respectively. For comparison, the S&P500 index delivered an average monthly excess

return of 0.60% and a Sharpe ratio of 0.48 over the same time period.3

This paper touches upon several strands of the literature. While I implement a modified

version of the Merton (1974) model, that was not the only possible choice. The literature

on structural credit risk models has since the publication of Merton (1974) added additional

economic mechanisms: Black and Cox (1976) introduce a default boundary and Leland

(1994) accounts for bankruptcy costs and the tax benefits of debt. More recent advancements

include Du, Elkamhi, and Ericsson (2019), who models the firm’s asset volatility as stochastic,

and Feldhütter and Schaefer (2023), who incorporate stochastic debt dynamics. Vassalou and

Xing (2004) also implements the Merton (1974) model on a firm-level basis using an iterative

estimation technique and uncover the so-called distress risk puzzle. Bharath and Shumway

3These numbers are gross of transaction fees and should not be viewed as achievable by an investor. The
MVE portfolios serve as a testament to the DSM’s ability to accurately model not only expected equity
returns but also covariances.
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(2008) use a much simpler firm-level estimation technique to show that it is the functional

form of the Merton (1974) model, rather than the specific implementation of it, that matters

when using it for default prediction. ML has, in part, gained popularity within finance for its

ability to overcome the curse of dimensionality: a large number of factors and characteristics

has been put forth in the literature for explaining the cross-section of equity returns, leading

to the so-called “factor zoo” as Cochrane (2011) put it (see Harvey, Liu, and Zhu (2016),

Hou, Xue, and Zhang (2020), and Jensen, Kelly, and Pedersen (2022) for an overview of

the many factors proposed in the literature). Freyberger, Neuhierl, and Weber (2020), Feng,

Giglio, and Xiu (2020), and Kozak, Nagel, and Santosh (2020) use various shrinkage methods

on a large set of factors and characteristics to construct stochastic discount factors, while

Bryzgalova, Pelger, and Zhu (2020) and Chen, Pelger, and Zhu (2023) extend this idea

to non-linear ML techniques. The idea of modelling structural parameters as functions of

contemporary observable variables is heavily inspired by Kelly, Pruitt, and Su (2019) and Gu,

Kelly, and Xiu (2021) who use a multitude of characteristics to determine conditional betas

for equity returns in a latent factor model. Bali, Goyal, Huang, Jiang, and Wen (2020) use

the structural model of Du, Elkamhi, and Ericsson (2019) to motivate the use of hedge ratios

for predicting bond returns. They use different statistical methods, including ML models,

to estimate expected equity returns and hedge ratios, which they then use to predict bond

returns. Their paper is a great example of how to use financial theory and ML techniques

in conjunction with each other. While their methodology achieves significantly better bond

return predictions than traditional models, they do not estimate the underlying parameters

of their structural model, and so their predictions are still of a “black-box” nature. This

paper differs since I directly estimate the underlying firm-level asset dynamics, which not

only allows us to analyze these estimated parameters, but also enables us to use analytically

derived predictions for firm-level expected equity returns and (co)variances.

The paper proceeds as follows: Section 2 introduces the structural model, its implications,

and the empirical implementation using ML. Section 3 gives an overview of the data and

analyzes the out-of-sample performance of the DSM, and finally, Section 4 concludes.
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2 Model

2.1 A General Model

It is assumed that all systematic risk in the economy can be characterized by K independent

Brownian motions Bkt, for k = 1, ..., K. The price of risk associated with each Brownian

motion is time-varying and is denoted by λkt. In addition to the systematic risks, each

firm, denoted by i, is also exposed towards an idiosyncratic risk represented by another

independent Brownian motion, Eit. The asset value for firm i at time t, Vit, is then assumed

to follow a (K + 1)-dimensional geometric Brownian motion:

dVit =

(
rft − δit + αit +

K∑
k=1

βkitλkt

)
Vitdt+

K∑
k=1

βkitVitdBkt + ϵitVitdEit (1)

Where rft denotes the risk-free rate, δit is the firm-wide payout, αit is compensation unas-

sociated with any risk exposure and can be viewed as a mispricing or arbitrage term, βkit

is the risk exposure of firm i at time t towards the systematic Brownian motion Bkt, while

ϵit is the risk exposure towards the idiosyncratic Brownian motion Eit. For convenience, (1)

can also be written in matrix form:

dVit =
(
rft − δit + αit + βT

itλt

)
Vitdt+ βT

itVitdBt + ϵitVitdEit (2)

Where βit, λt, and Bt are now all K × 1 vectors containing the systematic risk exposures,

prices of risk, and systematic shocks, respectively. The stochastic process presented in (2) is

standard in the asset pricing literature, although it is commonly expressed more succinctly

as:

dVit = µitVitdt+ σitVitdWit (3)

Which, given the representation in (2), means that:

µit = rft − δit + αit + βT
itλt (4)

σit =
√

βT
itβit + ϵ2it (5)

dWit =
1√

βT
itβit + ϵ2it

(
βT
itdBt + ϵitdEit

)
(6)
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Despite the subscript on the single Brownian motion, Wit, it is important to note that firm

i is still exposed towards the K systematic risk factors.

2.2 Simplifying Assumptions

Now, assume that the contingent claims to the firm’s assets are defined as in Merton (1974).

That is, at time t, each firm has two contingent claims to its assets: A single class of

debt with a market value of Dit that promises a single cash flow at time t + 1 equal to

Fit+1, and equity, Eit, which is the residual claim to the firm’s assets. If, at time t + 1,

we have that Vit+1 ≥ Fit+1, then bondholders collectively receive Fit+1 and equity holders

receive Vit+1 − Fit+1. On the other hand, if Vit+1 < Fit+1, then bondholders receive Vit+1

and equity holders receive nothing. Thus, the terminal values of debt and equity can be

written as Dit+1 = min[Fit+1, Vit+1] and Eit+1 = max[Vit+1 − Fit+1, 0]. Additionally, the firm

is restricted from issuing new debt, paying dividends, or buying back shares before time

t + 1. This means that in the context of the general model in Section 2.1 we have that

δit = 0, ∀t < t+ 1.

Let Xit be a N × 1 vector containing a set of observable firm characteristics for firm i

at time t. Then, let Yt be a M × 1 vector of observable macroeconomic variables shared

among all firms at time t. Both Xit and Yt are assumed constant between t and t + 1.

For each systematic shock, k, it is assumed that there exists two sets of functions that map

the observable variables into firm risk exposures and market prices of risks, respectively.

Each risk exposure function, denoted βk, transforms the firm characteristics into a single

value, βk : RN → R, while each market price of risk function, denoted λk, depend on the

macroeconomic variables, λk : RM → R. Like the βk-functions, both the mispricing term,

αit, and the idiosyncratic risk exposure, ϵit, are functions that solely depend on the firm

characteristics, α : RN → R and ϵ : RN → R. Finally, the risk-free rate rft is assumed to be

constant between between t and t+ 1.

With these simplifying assumptions, we can rewrite the asset process of firm i from (3):

dVit = µ(Xit,Yt)Vitdt+ σ(Xit)VitdWit, ∀t < t+ 1 (7)
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Where the “transformation” equations (4)-(6) become:

µ(Xit,Yt) = rft + α(Xit) + β(Xit)
Tλ(Yt) (8)

σ(Xit) =
√
β(Xit)Tβ(Xit) + ϵ(Xit)2 (9)

dWit =
1√

β(Xit)Tβ(Xit) + ϵ(Xit)2

(
β(Xit)

TdBt + ϵ(Xit)dEit
)

(10)

Since it is clear from (7)-(10) which functions depend on Xit, Yt, or both, the observable

variables are omitted in the notation for the sake of simplicity, and a subscript of i is added

to functions that depend on Xit. Similarly, a subscript of t is added to the parameter

functions, but it is important to note that this indicates the parameters are time-varying

because of time-varying function inputs and not because the parameter functions themselves

are time-varying, i.e. β(·) does not change but its input variables, Xit, varies across firms

and time.

2.3 Model Implications

This section describes the analytical properties of the model in Section 2.2. Some of these

properties, such as the implied default probability, are well-known in the literature, while

others, such as the expected equity return and (co)variance, are not.

2.3.1 Default Implications

Let 1Vit+1<Fit+1
be an indicator variable equal to one if firm i defaults at time t + 1. The

probability of this event is the implied default probability of Merton (1974):

πit = E[1Vit+1<Fit+1
]

= Φ(−DDit) (11)

Where Φ(·) is the cumulative standard normal distribution and DDit is the distance to

default:

DDit =
ln
(

Vit

Fit+1

)
+ µit − σ2

it

2

σit

(12)
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2.3.2 Equity Implications

In a setting such as this, we know that the equity of the firm can be viewed as a European

call option on the underlying firm assets, i.e. the current equity value can be expressed as:

Eit = VitΦ(d1it)− Fit+1 exp{−rft}Φ(d2it) (13)

Where:

d1it =
ln
(

Vit

Fit+1

)
+ rft +

σ2
it

2

σit

(14)

d2it = d1it − σit (15)

At time t + 1, the equity value of a firm is equal to the asset value of the firm minus the

face value of debt bounded below at 0. When the asset value of a firm follows a Geometric

Brownian motion we know that the terminal (or in this case, the time t + 1) asset value is

log-normally distributed, which means that we can view the time t + 1 equity value as a

mixture distribution of a constant 0 and a shifted log-normal distribution truncated at 0:

LE
it+1 = πitδ(Eit+1) +

1

(Eit+1+Fit+1)
√

2πσ2
it

exp

−

(
ln
(

Eit+1+Fit+1
Vit

)
−
(
µit−

σ2
it
2

))2

2σ2
it

U(Eit+1) (16)

Where δ(·) and U(·) are the Dirac delta and the Heaviside step functions, respectively.4

From an empirical standpoint, it is more convenient to work with the density function for

the equity return:

Lr
it+1 = πitδ(1 + rit+1) +

1(
1+rit+1+

Fit+1
Eit

)√
2πσ2

it

exp

−

(
ln
(

(1+rit+1)Eit+Fit+1
Vit

)
−
(
µit−

σ2
it
2

))2

2σ2
it

U(1 + rit+1) (17)

Equation (17) is employed to fit the model to the data, however, to conduct an out-of-

sample analysis of equity return predictions, variance predictions, and portfolio optimization,

we need expressions for the expected equity returns and (co)variances. These are shown in

Appendix A.1 and A.2, respectively, to be:

E[rit+1] =
Vit

Eit

exp{µit}Φ (DDit + σit)− (1− πit)
Fit+1

Eit

− 1 (18)

4Be aware of the slightly confusing notation in (16) and (17): πit is the default probability of firm i,
whereas π without a subscript refers to the mathematical constant.
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And:

Cov[rit+1, rjt+1] = (1− πit − πjt + Cov[1Vit+1<Fit+1
,1Vjt+1<Fjt+1

] + πitπjt)

× 1

EitEjt

E
[
Eit+1Ejt+1|min[1Vit+1>Fit+1

,1Vjt+1>Fjt+1
] = 1

]
− (1 + E[rit+1])(1 + E[rjt+1]) (19)

In the case where i = j, i.e. the variance, equation (19) has the closed-form solution:

Var[rit+1] =
1

E2
it

(
E[V 2

it+1]Φ (DDit + 2σit)− V 2
it exp{2µit}Φ (DDit + σit)

2

− 2Vit exp{µit}Φ (DDit + σit)πitFit+1 + (1− πit)πitF
2
it+1

)
(20)

Where:

E[V 2
it+1] = V 2

it exp
{
2µit + σ2

it

}
(21)

To avoid using the computationally expensive procedure of numerically estimating the co-

variance matrix through (19), I use asset return correlations as a proxy for equity return

correlations. Specifically, the asset return correlation between firm i and j, at time t, can be

analytically calculated as:

ρVijt =
βT
itβjt + 1i=jϵitϵjt

σitσjt

(22)

Then, using ρVijt as a proxy for the equity return correlation, the equity return covariance

between firm i and j is estimated as:

Cov[rit+1, rjt+1] = ρVijt

√
Var[rit+1]Var[rjt+1] (23)

2.4 Empirical Implementation

While the theoretical framework assumes knowledge of the model parameters, this is not the

case in practice. In fact, the only value we can reasonably assume to be observable is Eit,

which is calculated as the total number of shares outstanding, Sit, times the price of each

share, P S
it :

Eit = SitP
S
it (24)

Since each firm has a lot of different debt instruments in practice, it is not clear how we

10



should measure the debt value of the theoretical framework, Dit, or the face value Fit+1. I

follow the convention of previous literature, such as Vassalou and Xing (2004) and Bharath

and Shumway (2008), and estimate the face value of the debt as short-term debt, F SD
it+1, plus

half of long-term debt, FLD
it+1:

5

Fit+1 = F SD
it+1 + 0.5FLD

it+1 (25)

The market value of debt is then estimated by discounting the face value with the risk-free

rate:6

Dit = Fit+1 exp{−rft} (26)

To find the total firm value add (24) and (26):

Vit = Eit +Dit (27)

There are no theoretical constraints on the mispricing function, α, the risk-exposure

functions, βk, the prices of risk functions, λk, or the idiosyncratic asset volatility function, ϵ.

This is where the “Deep” part of the “Deep Structural Model” comes into play: in order to

keep the overall model as flexible as possible, the α, βk, λk, and ϵ functions are all modelled

as neural networks. Specifically, they will be structured as standard feed-forward neural

networks with 1 hidden layer.7 An illustrative example of the parameter functions, can

be seen in Figure 2. From the figure, we see that each function takes its input variables

(either Xit or Yt) and passes it to a set of hidden nodes. At each hidden node, some linear

combination of the input variables is passed through an activation function. The machine

learning literature proposes a wide range of activation functions, but a particular common

one is the rectified linear unit (ReLU) function, which will be utilized by all hidden nodes

across the parameter functions:

ReLU(x) = max[x, 0] (28)

5Short-term debt and long-term debt is defined as “Debt in Current Liabilities - Total” and “Long-Term
Debt - Total”, respectively, from the Compustat database.

6This is obviously a major simplification as there should be some yield spread added to the discounting.
However, due to the lack of good firm-level yield spread proxies that covers the entire data set described in
Section 3.1, I follow a similar simplified debt value estimation as Bharath and Shumway (2008).

7It is possible to add more hidden layers to the functions, however, the results shown in Section 3 generally
deteriorate when more hidden layers are added.
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= Observable variable = Function = Output

x1it · · · xNit

hβ
1

· · · hβ
G

Oβ
1

· · · Oβ
K

β(Xit;θ
β)

y1t · · · yMt

hλ
1 · · · hλ

G

Oλ
1 · · · Oλ

K

λ(Yt;θ
λ)

x1it · · · xNit

h
α/ϵ
1

· · · h
α/ϵ
G

Oα/ϵ

α/ϵ(Xit;θ
α/ϵ)

Figure 2: The Parameter Functions. This figure shows the general structure of the parameter
functions of the asset value process, where α/ϵ indicates that α and ϵ has the same function
structure. Each function takes a vector of inputs (Xit for α, β and ϵ, and Yt for λ) and passes
them along to G hidden nodes. Each of the hidden nodes transform a linear combination of its
inputs to a single positive real number through the ReLU function (ReLU(x) = max[x, 0]). Finally,
the outputs from each hidden node are passed to a number of output nodes (K output nodes for
β and λ and 1 for α and ϵ) each of which outputs some linear combination of its inputs, i.e. the
activation function of all the output nodes is the identity function, I(x) = x.

The hidden nodes in Figure 2 will therefore have the following functional forms:

h
α/β/ϵ
git = max

[
aα/β/ϵg +

N∑
n=1

bα/β/ϵgn xnit, 0

]
(29)

hλ
gt = max

[
aλg +

M∑
m=1

bλgmymt, 0

]
(30)

Where α/β/ϵ indicates that the function structure is the same for α, β, and ϵ, while g ∈

1, ..., G with G being the number of hidden nodes.8 All outputs from each of these hidden

nodes then feed into a set of output nodes, that, similarly to the hidden nodes, transforms

the linear combination of its inputs into a single real number. All output nodes utilize the

identity function, I(x) = x, which means their functional forms are:

O
α/ϵ
it = aα/ϵ +

G∑
g=1

bα/ϵg h
α/ϵ
git (31)

8The choice of G is arbitrary and could be treated as a hyperparameter, however, for simplicity this paper
use G = 32.
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Oβ
kit = aβk +

G∑
g=1

bβgkh
β
git (32)

Oλ
kt = aλk +

G∑
g=1

bλgkh
λ
gt (33)

All parameters associated with the α, βk, λk, and ϵ functions in (29)-(33) are denoted θα,

θβ, θλ, and θϵ, respectively.

Putting it all together, the complete Deep Structural Model of this paper can be viewed

as a neural network, with an architecture imposed by the structural model of Section 2. A

full general model illustration can be seen in Figure 3. The specific loss function used to

train the model, along with the training procedure itself, can be found in Appendix B.

3 Empirical Results

3.1 Data

The primary data source for the empirical analysis is the combined US Compustat and CRSP

data from Jensen, Kelly, and Pedersen (2022), which has been provided by the authors.

The data set includes 4,135,225 firm-month observations from 1925-2021. I exclude firm-

month observations where one or more of the following variables is missing: (company wide)

market equity value, short-term debt, long-term debt, or one-month ahead equity return.

This removes all firm-months in the early part of the sample, leaving a total of 3,197,609

firm-month observations from 1950-2021 for the actual empirical analysis. For the firm

specific characteristics, I use the 153 variables used as the basis for the 153 factors explored

in Jensen, Kelly, and Pedersen (2022). Additionally, a set of industry dummies based on

the first two digits of a firm’s SIC code (including a missing SIC dummy) are added as firm

characteristics. This means that Xit ∈ R238. For the macroeconomic variables I use the 14

variables in Welch and Goyal (2008) that covers the full time-period 1950-2021, alongside

with the monthly S&P500 return.9 I augment these 15 macroeconomic variables by taking

the quarterly and yearly changes,10 so that Yt ∈ R45. The macroeconomic variables are

9Specifically, b/m, d/e, d/p, d/y, dfr, dfy, e/p, infl, ltr, lty, ntis, sp500ret, svar, tbl, tms.
10For sp500ret and dfr, the quarterly and yearly returns are used instead.
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Figure 3: Deep Structural Model Architecture. This figure shows the full architecture of the DSM
of this paper. At the bottom we have the “Deep Layer” where all observable inputs, Xit and Yt,
feed into the α function, the risk exposure functions, β1, ..., βK , market price of risk functions,
λ1, ..., λK , and the idiosyncratic asset volatility function, ϵ. In the middle we have the “Structural
Layer” containing all the structural parameters. Finally, at the top, we have the “Output Layer”.
This layer is essentially all the implications associated with the structural model, however, the
output shown in this figure is limited to the equity return likelihood function as that is the only
object used for training the model.

all extracted from Amit Goyal’s personal website, from which an estimate of the monthly

risk-free interest rate, rft, is also extracted. The data is then split into a training set, T1

(1950-1974), a validation set, T2 (1975-1984), and a test set, T3 (1985-2021). Additional

information regarding data preprocessing can be found in Appendix C.
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3.2 The Estimated Model Parameters

Panel A of Table 1 reports the out-of-sample distributional properties of the parameters,

for the DSM with K = 5, on an annualized basis.11 The µit parameter has an average of

9.39% and a standard deviation of 12.92%, and the empirical distribution has heavy tails

as indicated by a p1 and p99 value of -26.07% and 50.85%, respectively. Breaking down

µit into its constituent parts: rft, αit, and βitλt, we see that they contribute 36.00% (3.38
9.39

),

23.21% (2.18
9.39

), and 40.79% (3.83
9.39

), respectively, to the average value of µit. Thus, the DSM

suggests that, on average, the biggest contributor to the average expected asset return is

systematic risk compensation, rather than mispricing. The contribution of αit ranges from

19.95% to 29.11% across the 6 different DSM specifications with K ∈ 1, ..., 6. In terms of

the average excess asset return, µit − rft, systematic risk compensation constitutes 63.73%

(3.83
6.01

), while mispricing only constitutes 36.27% (2.18
6.01

). It is worth noting that while αit is

the smallest contributor to the average asset drift, it is highly dispersed as indicated by

a standard deviation of 12.51%, which is significantly higher than the standard deviations

of 2.50% and 6.85% for rft and βitλt, respectively. This means that while the location of

the asset drift distribution is primarily determined by systematic risk compensation and the

risk-free rate, the scale and tails are driven by the mispricing term. This effect seem to be

largest at the left tail of the distribution, meaning that a negative expected asset return is

more likely to be caused by overpricing (negative αit), rather than because the firm’s assets

act as a hedge against systematic risk exposure (negative βitλt).

Looking at σit, the DSM estimates an annualized average asset volatility of 34.69%.

This is somewhat higher than previous literature such as Schaefer and Strebulaev (2008)

and Feldhütter and Schaefer (2018) who estimate an average annualized asset volatility of

22% and 25%, respectively. These estimates, however, are based on samples of corporate

bonds which are likely skewed towards larger firms. Limiting the sample of this paper to

the 1,000 largest firms of each cross-section, as measured by market equity, reduces the

average annualized asset volatility to 25.96%. Looking at the constituents of σit:
√

βT
itβit

and
√

ϵ2it, it is clear that the vast majority of asset volatility is coming from systematic,

11As will become clear in the coming sections, the DSM specification with K = 5 is the best performing
model, however, similar distributional results are obtained for Table 1 when using K ∈ 1, 2, 3, 4, 6.
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Mean Std. p1 p5 p10 p25 p50 p75 p90 p95 p99
Panel A: Annualized Parameters

µit 9.39 12.92 -26.07 -10.78 -3.90 3.99 8.77 14.38 23.08 30.73 50.85
- rft 3.38 2.50 0.00 0.00 0.00 0.96 3.72 5.28 6.60 7.44 8.40
- αit 2.18 12.51 -35.45 -19.23 -12.01 -3.25 2.69 8.24 15.29 21.30 36.48
- βT

itλt 3.83 6.85 -6.13 -4.35 -3.22 -0.50 2.80 6.19 12.30 16.10 28.57
σit 34.69 16.40 10.36 13.79 17.26 23.08 30.78 43.40 57.61 66.86 85.44

-
√
βT
itβit 33.78 15.88 10.21 13.39 16.54 22.01 29.44 41.70 55.43 64.44 82.85

-
√
ϵ2it 7.90 6.97 0.05 0.27 0.59 2.84 6.04 11.19 17.44 21.85 31.13

Lit =
Dit

Vit
18.94 21.16 0.00 0.00 0.00 1.49 11.09 29.68 52.65 65.15 80.72

Panel B: Annualized Expected Equity Returns
E[rit+1] 11.62 19.33 -33.04 -14.01 -5.61 4.44 10.53 17.42 28.19 38.79 71.84

Table 1: DSM Parameter and Expected Equity Return Distributions. This table shows the out-of-
sample distributions of the annualized parameters for the DSM with K = 5 (Panel A), along with
the distribution of the annualized expected equity return (Panel B). The two first columns indicate
the mean and standard deviation, while the rest denote specific percentiles of the distributions. All
values are reported in percentages.

rather than idiosyncratic, volatility. Both the mean and standard deviation of
√

βT
itβit is

almost identical to that of σit itself. The actual proportion of the average asset volatility

coming form systematic risk exposure is 94.82% (33.78
2

34.692
) and this proportion ranges from

88.05%-98.19% across the six different DSM specifications with K ∈ 1, ..., 6.

Leverage, as defined by the ratio of the estimated market value of debt, Dit, to the

overall market value of the assets, Vit, has an average value of 18.94%, but is heavily right-

skewed with a substantial minority of firms having little to no debt. Leverage has a profound

effect when moving from the distribution of µit in Panel A to the expected equity return

distribution of Panel B: the average expected equity return is 11.62% which represents an

increase of 23.75% over the average value of µit. Even more striking is the increase in the

dispersion when moving from expected asset returns to expected equity returns: the standard

deviation jumps to 19.33%, which represents a 49.61% increase. This is consistent with the

empirical findings of Doshi, Jacobs, Kumar, and Rabinovitch (2019) that leverage has a large

impact on the dispersion of equity returns.

Figure 4 plots the time series of the cross-sectional average for each of the three primary

parameters: µ̄t, σ̄t, and L̄t. The time series of µ̄t shows a high degree of short-term time

series variation, but has no clear time trend or interaction with recessions (as indicated
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by the shaded red areas). The average asset volatility, σ̄t, is quite stable over short time

periods12 but has generally trended up during the out-of-sample time period, from a low of

around 30% in the late 1980’s to around 40% at the end of 2021. Finally, the cross-sectional

average leverage, L̄t, spikes heavily during recessions, but remains relatively stable in a range

of 15%-20% during normal times.

Figure 5 plots the time series of the estimated equity premium, EPDSM
t , which is calcu-

lated as the cross-sectional value-weighted average of the expected equity return minus the

risk-free rate. For comparison, the SVIX time series of Martin (2017) is also shown in the

figure.13 EPDSM
t is generally above the SVIX, which is theoretically justified as it represents

a lower bound on the equity premium, and their correlation is 0.41. Both time series peak

during the financial crisis of 2008-09, although EPDSM
t peaks at just over 15%, whereas

the SVIX peaks above 25%. The fact that EPDSM
t increase during recessions is interesting

given that the time series of µ̄t in Figure 5 shows no such tendency. This suggests that the

underlying asset dynamics of firms might be more stable than suggested by the literature;

the time series dynamics of leverage is enough to create time series dynamics of the equity

premium that are consistent with empirical observations.

3.3 Equity Return Prediction

The DSM predicts firm-level equity returns by inserting the estimated model parameters into

equation (18). The performance measure used to evaluate these predictions, is the zero-mean

out-of-sample R2
oos, also used in Gu, Kelly, and Xiu (2020):

R2
oos = 1−

∑
(i,t)∈T3 (rit+1 − r̂it+1)

2∑
(i,t)∈T3 r

2
it+1

(34)

Where r̂it+1 is the predicted equity return. The performance of the DSM is compared to

two benchmark models: A machine learning benchmark (NN Benchmark), which is chosen

12The sudden spikes and drops that occur during the first half of the out-of-sample period is a consequence
of re-training the model each year. Incorporating another year of training data has a comparatively larger
impact on the estimated model parameter functions of Figure 2 in the first half of the sample compared to
the second half, since another year represents a larger fraction of additional data during this time.

13The SVIX time-series is downloaded directly from Ian Martin’s personal website and covers time time-
period from 1996-2011.
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Panel A: µ̄t Time Series

Panel B: σ̄t Time Series

Panel C: L̄t Time Series

Figure 4: DSM Parameter Time Series. This figure plots the out-of-sample time series of the cross-
sectional average annualized parameter value for the three primary model parameters: µ̄t (Panel
A), σ̄t (Panel B), and L̄t (Panel C), from the DSM specification with K = 5. The time periods
shaded in red indicate (NBER) recessions.
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Figure 5: Equity Premium Time Series. This figure plots the out-of-sample time series of the
cross-sectional value-weighted average expected excess equity return, from the DSM specification
with K = 5, calculated across all firms (full black line). Additionally, the figure also plots the SVIX
time series of Martin (2017) (dotted blue line).

to be a standard feed-forward neural network, as it is the best performing model in Gu,

Kelly, and Xiu (2020), and a linear benchmark (OLS Benchmark), which is simply an OLS

regression. Both of these are trained on the same data as the DSM, with the neural network

also having a similar training procedure as the DSM (see Appendix B.2 for details). Both

of the benchmark models use the combined set of firm characteristics and macroeconomic

variables as input. Table 2 reports the performance of the DSM, along with the NN and OLS

benchmarks. The first six columns of the table report the performance of the DSM with an

increasing number of systematic risk factors, indicated by K ∈ 1, ..., 6, while the two last

columns report the performance of the benchmark models.14 Each row of Table 2 indicate

which subset of the data is used for calculating R2
oos, with “All” referring to the entire test

dataset, while “Top 1,000” (“Bottom 1,000”) refers to the subset containing only the 1,000

largest (smallest) firms of each cross-section, as measured by market equity. From the table it

is clear that the DSMs outperform both of the benchmark models in terms of R2
oos: all DSM

specifications have values between 0.74 and 0.80, when estimated across all out-of-sample

observations, compared to 0.56 for the NN benchmark and -10.60 for the OLS benchmark.15

14Five different versions of the NN benchmark model have been trained, with a varying number of hidden
layers, H ∈ 1, ..., 5, but only the best performing one in terms of R2

oos (H = 2) is used as a benchmark model
throughout this section.

15The R2
oos value for the NN benchmark is similar to the one reported in Gu, Kelly, and Xiu (2020).
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This outperformance is not due to the presence of small-caps as the majority of the DSMs

actually have higher R2
oos-values for the data subset containing the largest firms.16

DSM NN OLS
K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 Benchmark Benchmark

All 0.75 0.74 0.76 0.77 0.80 0.75 0.56 -10.60
Top 1, 000 1.03 1.02 1.03 1.04 1.11 1.04 0.85 -35.33
Bottom 1, 000 0.89 0.85 0.90 0.91 0.93 0.88 0.67 -4.47

Table 2: Equity Return Prediction Performance. This table reports the out-of-sample eq-
uity return predictive performance for the DSM and two benchmark models: a neural net-
work model and an OLS regression. The performance measure is the zero-mean R2

oos measure,

R2
oos = 1 −

∑
(i,t)∈T3

(rit+1−r̂it+1)
2∑

(i,t)∈T3
r2it+1

, reported in percentages. The table reports the performance for

six different specifications of the DSM, with a varying number of systematic shocks K ∈ 1, ..., 6,
indicated by the first six columns. Each row of the table denotes the specific subset of the data used
for calculating R2

oos. “All” refers to the entire test dataset, T3, while “Top 1,000” (“Bottom 1,000”)
refers to the sub-sample consisting of only the 1,000 largest (smallest) firms of each cross-section.

Next, to examine if the higher R2
oos-values of the DSMs translate into portfolios with

higher returns and Sharpe ratios, I form decile portfolios each month based on the expected

equity returns from each model. In addition to the decile portfolios, I also create a long-short

portfolio that is long the 10th decile portfolio and short the 1st. Table 3 reports the out-of-

sample performance of these portfolios in terms of the average monthly excess return (Panel

A), the standard deviation of the monthly excess returns (Panel B), and the annualized

Sharpe ratios (Panel C). Looking at Panel A, we see that all DSMs have a strictly monotone

increase in the realized average excess returns, as we move down the panel, which is not

the case for the benchmark models (although it is close in the case of the NN benchmark).

Furthermore, the realized excess returns of the long-short portfolios are much higher for the

DSM portfolios compared to the benchmark models: the lowest average excess return of

the DSM based long-short portfolios is 2.63% (K = 1), which is still 0.72 percentage points

higher than the NN benchmark, while the best performing DSM portfolio has an average

monthly excess return of 3.10% (K = 5).

Looking at Panel B, a curious pattern emerges: the DSMs indicate a pronounced convex

relationship between the realized excess return and the standard deviation of the decile

16Interestingly, the DSMs and the NN benchmark generally have higher R2
oos for both of the data subsets

examined here, indicating that these models perform worse, in terms of R2
oos, for mid-sized firms compared

to the firms at the ends of the size spectrum.
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DSM NN OLS
Decile K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 Benchmark Benchmark

Panel A: Average Monthly Excess Return
1 -0.78 -0.87 -0.84 -0.90 -1.01 -0.90 -0.16 0.33
2 -0.15 -0.15 -0.12 -0.12 -0.03 -0.11 0.30 0.56
3 0.33 0.29 0.32 0.36 0.24 0.26 0.63 0.73
4 0.53 0.58 0.57 0.58 0.51 0.48 0.78 0.73
5 0.73 0.72 0.72 0.78 0.73 0.74 0.73 0.97
6 0.85 0.87 0.89 0.95 0.99 0.94 0.98 0.95
7 1.09 0.99 1.11 1.08 1.03 1.03 1.11 1.02
8 1.20 1.26 1.20 1.23 1.25 1.23 1.20 1.00
9 1.50 1.44 1.46 1.43 1.33 1.36 1.39 1.37
10 1.85 1.88 1.99 1.86 2.09 1.89 1.75 1.17
10-1 2.63 2.75 2.83 2.76 3.10 2.79 1.91 0.85

Panel B: Std. of Monthly Excess Returns
1 8.40 8.50 8.65 8.33 8.50 8.78 6.40 4.99
2 6.57 6.54 6.49 6.56 6.77 6.91 5.44 4.31
3 5.04 5.16 4.95 5.03 5.12 5.48 5.22 4.31
4 4.59 4.45 4.43 4.38 4.48 4.35 4.97 4.45
5 4.30 4.31 4.29 4.37 4.35 4.33 5.05 4.64
6 4.31 4.38 4.44 4.45 4.47 4.40 5.06 4.73
7 4.61 4.63 4.67 4.67 4.73 4.70 5.13 5.38
8 5.12 5.26 5.21 5.29 5.12 5.24 5.50 5.86
9 5.93 6.15 6.16 6.64 6.28 6.09 5.97 6.41
10 7.34 7.63 7.56 7.58 7.70 7.69 6.90 7.66
10-1 6.38 6.53 6.44 6.26 6.44 6.40 6.10 5.64

Panel C: Annualized Sharpe Ratio
1 -0.32 -0.36 -0.34 -0.38 -0.41 -0.36 -0.16 0.23
2 -0.08 -0.08 -0.07 -0.06 -0.02 -0.05 0.19 0.45
3 0.23 0.20 0.22 0.25 0.16 0.16 0.42 0.59
4 0.40 0.45 0.45 0.46 0.40 0.39 0.54 0.56
5 0.59 0.58 0.58 0.61 0.58 0.59 0.50 0.73
6 0.69 0.69 0.70 0.74 0.80 0.74 0.67 0.69
7 0.82 0.74 0.82 0.80 0.73 0.76 0.75 0.65
8 0.81 0.83 0.80 0.81 0.85 0.81 0.76 0.59
9 0.88 0.81 0.82 0.75 0.74 0.75 0.81 0.74
10 0.87 0.85 0.91 0.85 0.94 0.85 0.88 0.53
10-1 1.43 1.46 1.52 1.53 1.67 1.51 1.08 0.52

Table 3: Decile Portfolio Performance. This table reports the out-of-sample performance of decile
portfolios based on monthly sorts on the expected equity returns, r̂it+1, from one of seven different
models as indicated by the columns. In addition to the decile portfolios, the performance of a
long-short portfolio, which is long the 10th decile portfolio and short the 1st, is also reported. Panel
A of the table reports the average monthly excess return (in percentages) for each portfolio, Panel
B reports the standard deviation of monthly excess returns, while Panel C reports the annualized
Sharpe ratios. All portfolios are value-weighted.
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portfolios, i.e. the most volatile portfolios are those with the lowest and highest average

excess returns. One might suspect that this convex relationship between excess returns and

volatility would cause the Sharpe ratios of the highest decile portfolios to be lower than

the middle ones, but this is generally not the case, as is evident from Panel C: the Sharpe

ratios of the DSM portfolios are generally increasing. Looking at the DSM based long-short

portfolios, we see that they handily outperform the benchmark portfolios with Sharpe ratios

between 1.43 (K = 1) and 1.67 (K = 5), compared to 1.08 and 0.52 for the NN benchmark

and OLS benchmark, respectively. Investors can therefore achieve significant benefits in

terms of both absolute returns and Sharpe ratios by adopting the DSM framework of this

paper, when forming long-short portfolios, compared to an off-the-shelf machine learning

approach.

3.4 Equity Return Variance Prediction

One of the advantages of the DSM presented in this paper is its versatility: it is not confined

to being an equity return model but offers insights into all the model implications presented

in Section 2.3. To explore this further, I use the analytical expression in (20) to produce

out-of-sample equity return variance predictions. Unlike equity returns, variances are not

observed over a single period and so the “realized” variance is based on the daily variance

of equity returns between t and t+ 1:

Var[rit+1] =
D∑

d=1

(rid − r̄it+1)
2 (35)

Where D is the number of days between time t and t + 1, rid is the daily return on day d,

and r̄it+1 is the average daily return across all D days. As a benchmark, a GARCH(1,1)

model is recursively fit to each individual firm.17

17Because of the estimation procedure of the GARCH(1,1) model, the predictions are restricted to firm-
month observations without any data gaps and with at least 12 prior observations, e.g. if a firm enters the
dataset in July, 1995, and exits after July, 1997, then it is required that there are a total of 24 firm-month
observations for this particular firm and the first 12 observations will not be used for the variance prediction
analysis. With this restriction, the test dataset shrinks from 2,334,603 to 1,605,489 observations for this
particular section of the paper. The fact that we need this restriction also highlights a strength of the DSM
framework: once trained, all that is needed for predicting the next-period variance is a single contemporary
firm observation, i.e. no historical information is needed.
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DSM GARCH
K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 Forecast

Panel A: Regression Results
Constant 0.02*** 0.25*** 0.37*** 0.42*** 0.50*** 0.53*** -1.05***

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

log(V̂ar[rit+1]) 1.01*** 1.04*** 1.07*** 1.08*** 1.10*** 1.11*** 0.76***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Time FE Yes Yes Yes Yes Yes Yes Yes
R2 0.53 0.53 0.53 0.53 0.53 0.53 0.50
N 1,605,489 1,605,489 1,605,489 1,605,489 1,605,489 1,605,489 1,605,489

Panel B: MSE
All 3.257 3.276 3.280 3.275 3.280 3.285 4.137
Top 1,000 0.096 0.096 0.096 0.095 0.095 0.096 0.168
Bottom 1,000 18.812 18.905 18.919 18.894 18.926 18.950 21.420

Table 4: Equity Return Variance Prediction. This table reports the out-of-sample performance
of seven different models for predicting the equity return variance over the coming month. The
first six columns are DSMs with an increasing number of systematic shocks, as indicated by K,
while the “GARCH Benchmark” refers to the performance of a GARCH(1,1) model recursively
fit to each individual firm. Panel A reports the results of the regression log(Var[rit+1]) = a +

b log(V̂ar[rit+1]), where Var[rit+1] is the daily equity return variance between time t and t + 1,

multiplied by the number of days in that time period, and V̂ar[rit+1] is the predicted variance. The
parentheses report the estimated standard errors, while ***, **, *, indicate statistical significance
at the 0.05, 0.01, and 0.001 level, respectively. Panel B reports the mean squared error, MSEoos =
(Var[rit+1] − V̂ar[rit+1])

2, scaled by 100, across all out-of-sample observations, as well as the data
subsets consisting of the 1,000 largest and smallest firms of each cross-section.

Panel A of Table 4 reports the out-of-sample results of regressing the log of the realized

return variance onto the log of the variance prediction, for each of the six DSM specifications

and the GARCH benchmark:

log(Var[rit+1]) = a+ b log(V̂ar[rit+1]) (36)

Where V̂ar[rit+1] is the predicted equity return variance for the next period. The panel shows

that the DSM predictions explain a higher proportion of the return variance compared to

the GARCH benchmark, as measured by R2. Interestingly, it seems like the DSMs and the

GARCH model produce variance estimates that are biased in opposite directions: the DSMs

(GARCH model) tend to underestimate (overestimate) the realized variance as indicated by

a positive (negative) constant and a coefficient above (below) one. The six different DSM

specifications result in different regression coefficients, especially in terms of the intercept
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which ranges from 0.02 (K = 1) to 0.53 (K = 6), however, this does not translate into

differences in terms of R2. Panel B of Table 4 report the out-of-sample mean squared error,

MSEoos, for each of the seven models:

MSEoos =
1

NT3

∑
(i,t)∈T3

(Var[rit+1]− V̂ar[rit+1])
2 (37)

From Panel B, we see that the DSMs have MSEs that are between 20.59%-21.27% lower than

that of GARCH benchmark. This outperformance is consistent across the size spectrum of

firms, as indicated by the second and third row of the panel.

These results suggest that, even though the DSMs have only been trained on equity return

data, the conditional parameter estimates, used in conjunction with the model implications

of Section 2.3, are able to accurately describe and predict, not only the first, but the second

moment of equity returns, on a firm-level basis.

3.5 Mean-Variance Efficient Portfolios

To examine how well the DSM estimate the conditional covariance matrix of equity returns, I

construct a classic mean-variance efficient (MVE) portfolio in the spirit of Markowitz (1952),

at each point in time, by solving the following portfolio choice problem:

max
wt

wT
t (r̂t+1 − 1rft)

wT
t Σ̂t+1wt

(38)

s.t. wT
t 1 = 1 (39)

||wt||1 ≤ 3 (40)

Where w is the vector containing the MVE portfolio weights, r̂t+1 is the vector of expected

returns, and Σ̂t+1 is the estimated conditional covariance matrix with elements calculated

according to (23). The first constraint in (39) ensures the weights sum to one. The second

in (40) states that the ℓ1-norm of the weights cannot exceed 3, which has the practical effect

of limiting the leverage of the MVE portfolio such that the sum of the negative weights do

not exceed -1. In addition to the MVE portfolios created by solving (38)-(40), a long-only

version is also constructed by replacing the constraint in (40) with wit ≥ 0 ∀i ∈ 1, ..., It,
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where It is the number of firms in cross-section t. These are referred to as “long-only MVE

portfolios”, while the others are referred to as “unconstrained MVE portfolios”.18 At each

point in time, both the unconstrained and long-only MVE portfolios are constructed using

three different investment universes: all firms, the largest 3,000 firms, and the largest 1,000

firms.

Table 5 and 6 reports the monthly average excess returns (Panel A), the monthly stan-

dard deviation of excess returns (Panel B), and the annualized Sharpe ratios (Panel C),

for the unconstrained and long-only MVE portfolios, respectively, for each of the six DSM

specifications. The rows of each panel indicate which investment universe has been used

for constructing the MVE portfolios. Even when only considering the 1,000 largest firms of

each cross-section, the unconstrained MVE portfolios have average monthly excess returns

of over 2% and Sharpe ratios in the range of 1.07-1.54, which is comparable to the DSM

based long-short portfolios of Section 3.3. Increasing the investment universe to all firms

has the effect of increasing the average excess return and lowering the portfolio volatility,

resulting in extremely high Sharpe ratios: the unconstrained MVE portfolios, based on the

entire investment universe, have average monthly excess returns in the range of 4.74-5.19

and Sharpe ratios between 2.92 and 3.96. The long-only MVE portfolios constructed from

the entire investment universe generally have slightly lower average excess returns than their

unconstrained counterparts. They exhibit around the twice the volatility, resulting in Sharpe

ratios in the range of 1.34-1.93. Even though these Sharpe ratios seem small compared to

the Sharpe ratios of the unconstrained MVE portfolios, it is worth noting that the S&P 500

index had a Sharpe ratio of 0.48 over the same time period. The best performing long-only

MVE portfolio, constructed from only the 1,000 largest firms of each cross-section, had a

Sharpe ratio of almost double that (0.90 for the DSM with K = 6).

Figure 6 plots the cumulative log returns, over the out-of-sample period, of all MVE

portfolios for the DSM specification with K = 5. Additionally, the figure also plots the

cumulative log returns of the long-short portfolio based on the DSM with K = 5, the long-

18While the “unconstrained MVE portfolios” are subject to a leverage constraint, they produce portfolios
that a similar to a scaled version of the completely unrestricted MVE portfolios, which is why they are
labelled as “unconstrained”. The leverage constraint has the effect of stabilizing the portfolio performance
across the the different DSM specifications, but is not strictly needed to produce portfolios with high Sharpe
ratios.
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DSM
K = 1 K = 2 K = 3 K = 4 K = 5 K = 6

Panel A: Average Monthly Excess Return
All 4.79 5.19 4.74 4.78 4.89 4.96
Top 3,000 3.52 3.91 3.52 3.58 3.61 3.61
Top 1,000 2.21 2.34 2.17 2.17 2.25 2.32

Panel B: Std. of Monthly Excess Return
All 5.69 4.72 4.22 4.22 4.28 4.72
Top 3,000 5.41 4.59 4.28 4.35 4.21 4.69
Top 1,000 7.14 5.79 4.95 4.89 5.18 5.65

Panel C: Annualized Sharpe Ratio
All 2.92 3.81 3.89 3.92 3.96 3.64
Top 3,000 2.25 2.95 2.85 2.85 2.97 2.66
Top 1,000 1.07 1.40 1.52 1.54 1.51 1.42

Table 5: Unconstrained MVE Portfolio Performance. This table reports the out-of-sample perfor-
mance of the MVE portfolios formed on the basis of the six DSM specifications with K ∈ 1, ..., 6.
Panel A reports the average monthly excess return (in percentages), Panel B reports the standard
deviation of excess returns, while Panel C reports the annualized Sharpe ratio. The rows of each
panel indicate which subset of the data has been used to construct the MVE portfolios.

DSM
K = 1 K = 2 K = 3 K = 4 K = 5 K = 6

Panel A: Average Monthly Excess Return
All 4.08 4.56 4.56 4.85 4.55 4.58
Top 3,000 2.34 2.49 2.40 2.53 2.44 2.31
Top 1,000 1.23 1.44 1.49 1.60 1.46 1.57

Panel B: Std. of Monthly Excess Return
All 10.53 10.20 8.84 8.85 8.52 8.24
Top 3,000 8.23 8.51 7.15 7.29 7.02 6.57
Top 1,000 7.84 7.10 6.35 6.24 6.00 6.01

Panel C: Annualized Sharpe Ratio
All 1.34 1.55 1.79 1.90 1.85 1.93
Top 3,000 0.99 1.01 1.16 1.20 1.20 1.22
Top 1,000 0.55 0.70 0.81 0.89 0.84 0.90

Table 6: Long-Only MVE Portfolio Performance. This table reports the same statistics as Table
5, but for MVE portfolios that prohibits short-selling.

short portfolio based on the NN benchmark model, the S&P 500 index, and the CRSP

value-weighted index. All portfolios have been scaled to have an overall annualized volatility

of 10%. All of the model based portfolios have outperformed the market portfolios during

this period.
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Figure 6: MVE Portfolio Performances. This figure shows the out-of-sample cumulative log returns
for the MVE portfolios based on the DSM with K = 5. The figure includes 3 versions of an
unrestricted and long-only MVE portfolio: one that includes all firms in the investment universe,
one that only considers the largest 3,000 firms when forming the portfolio, and one which only
considers the largest 1,000 firms when forming the portfolio. Additionally, the “NN LS” and “DSM
LS” are the long-short portfolios formed on the basis of the expected returns of the NN benchmark
model and the DSM model with K = 5, respectively, from Section 3.3. Finally, the figure also
includes the cumulative log return of the S&P500 index and the CRSP value-weighted index. All
portfolios are re-balanced monthly and scaled to have an annualized volatility of 10%.

It is also clear from the figure that the unconstrained MVE portfolio, based on the entire

investment universe, has performed several orders of magnitude better than the other portfo-

lios and its performance seem completely uncorrelated with recessions. Table 7 explores this

further by reporting various other performance measures for the scaled portfolios of Figure

6. The first two rows report the average excess monthly returns and the annualized Sharpe

ratios. The third row reports the estimated intercept (or α) of regressing the portfolio return

onto the five factors of Fama and French (2015) and the momentum factor of Carhart (1997)

(the “FF6 model”). The fourth and fifth row report the maximum portfolio drawdown and

the highest 1 month loss, respectively. They key takeaway from the table is the fact that
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the returns of all the different MVE portfolios are considered to be α in the FF6 model, and

they do not experience drawdowns of the same magnitude as those of the market portfolios.

Long-Short Unconstrained MVE’s Long-Only MVE’s Market Portfolios
NN DSM All Top 3,000 Top 1,000 All Top 3,000 Top 1,000 CRSP VW SP500

ER 0.91 1.39 3.26 2.45 1.25 1.54 1.00 0.70 0.49 0.40
SR 1.08 1.67 3.96 2.97 1.51 1.85 1.20 0.84 0.59 0.48
FF6 α 0.83 1.31 3.29 2.52 1.49 0.93 1.02 0.83 -0.01 -0.14
Max DD. -21.95 -11.10 -16.51 -13.95 -18.25 -11.02 -27.84 -21.43 -36.32 -38.02
Max 1M Loss -10.04 -6.98 -11.18 -9.05 -7.66 -11.02 -12.94 -15.03 -14.44 -14.28

Table 7: MVE Portfolio Performance Measures. This table reports various out-of-sample portfolio
measures for the portfolios depicted in Figure 6. The first and second row report the average
excess returns and annualized Sharpe ratios, respectively. The third row reports the intercept
from regressing the monthly portfolio returns onto the five factors of Fama and French (2015) and
the momentum factor of Carhart (1997). The fourth row shows the maximum drawdown of the
portfolio, while the fifth row reports the largest 1 month loss experienced during the out-of-sample
period.

The performance of the MVE portfolios is impressive, especially considering no form of

covariance shrinkage is needed (see Ledoit andWolf (2022) for a literature review on shrinking

the covariance matrix). Still, it is important to note that this paper does not claim that

these returns and Sharpe ratios can be achieved by an investor. While the leverage and

shorting restrictions, along with the investment universe limits, seek to make the portfolios

more realistic than a completely unrestricted MVE portfolio, there are still no considerations

given to trading costs or limits to short-selling. With that being said, this section shows that

not only does the DSM provide accurate return and variance predictions, it also provides

useful information about the covariance of equity returns.

3.6 Enforcing No-Arbitrage

The distribution of the estimated model parameters shown in Table 1 seem to suggest that

αit plays an important role for the dispersion of the asset drift, µit, and by extension, the

dispersion of expected equity returns. Removing the αit term from the model would force

the DSM to find parameter solutions in which all excess asset returns are compensation

for systematic risk exposure. It might be the case that this solution produce equity return

predictions that are just as accurate as the full model. To test whether this is the case, the

six different DSM specifications are re-trained with the αit parameter set to zero. The equity

28



return prediction exercise of Section 3.3 is then repeated.

Table 8 report R2
oos for the no-arbitrage DSMs. The first row contains the absolute values

while the second contains the ratio of the no-arbitrage version to the full model counterpart.

The table shows that, for low values of K, the no-arbitrage versions of the DSM are much

worse than the full model for predicting equity returns. For K ≥ 4, the performance is better

than the NN benchmark, but still not as good as their full model counterparts.

DSM
K = 1 K = 2 K = 3 K = 4 K = 5 K = 6

R2
oos Value 0.19 0.26 0.47 0.63 0.67 0.61

% of Full Model 25.33 35.14 61.84 81.82 83.75 81.33

Table 8: No-Arbitrage Equity Return Prediction Performance. This table reports the same R2
oos

measure as Table 2, but for the equity return predictions from the six DSM versions with αit set
to zero. The first row is the absolute R2

oos-value across all out-of-sample observations, while the
second is the relative value compared to the full model performance (as found in the first row of
Table 2), reported in percentages.

.

As in Section 3.3, I form decile portfolios based on the expected returns from the no-

arbitrage DSMs and look at their out-of-sample performances. The results can be seen in

Table 9. Here we see that the lower R2
oos-values for the no-arbitrage DSMs translate into lower

average realized excess returns and Sharpe ratios. The best performing long-short portfolio

is (again) the portfolio based on the predictions from the DSM with K = 5, however, this

portfolio “only” has a Sharpe ratio of 1.06, which is not only lower than the full model DSM,

but also lower than the NN benchmark long-short portfolio.19

The results of this section confirm the results of Section 3.2, namely, that αit is an

important piece of the puzzle. It not only helps the DSM provide more accurate equity

return predictions, but is also crucial when constructing portfolios based on the estimated

model parameters.

19Constructing MVE portfolios based on the no-arbitrage DSMs have higher Sharpe ratios than the NN
benchmark. They do not, however, outperform the MVE portfolios constructed from the full model DSMs
and their relative performance mirror that of the long-short portfolios.
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DSM
Decile K = 1 K = 2 K = 3 K = 4 K = 5 K = 6

Panel A: Average Monthly Excess Return
1 0.69 0.12 -0.58 -0.64 -0.75 -0.84
2 0.75 0.66 0.19 -0.02 0.07 0.09
3 0.80 0.78 0.39 0.33 0.22 0.32
4 0.84 0.88 0.74 0.66 0.68 0.63
5 0.91 1.03 0.94 0.86 0.81 0.85
6 0.92 1.19 1.09 1.07 1.00 0.88
7 0.77 1.09 1.19 1.22 1.20 1.12
8 0.53 0.83 1.16 1.25 1.10 1.05
9 0.38 0.79 1.04 1.12 1.16 1.20
10 -0.08 0.82 1.04 1.28 1.52 1.32
10-1 -0.77 0.70 1.62 1.92 2.27 2.16

Panel B: Std. of Monthly Excess Returns
1 3.62 5.16 7.93 8.78 9.18 9.29
2 4.24 4.55 6.06 6.53 7.19 6.97
3 4.92 4.48 4.80 4.90 4.98 4.95
4 5.65 4.78 4.33 4.36 4.33 4.28
5 6.41 5.35 4.57 4.14 4.28 4.29
6 7.28 5.71 5.15 4.61 4.61 4.60
7 7.99 6.57 5.06 5.19 5.04 5.13
8 8.49 6.95 6.01 5.63 5.69 5.39
9 9.62 7.53 6.37 6.23 6.08 6.49
10 10.72 8.53 7.78 7.85 7.51 7.53
10-1 9.58 7.00 6.73 6.76 7.39 7.10

Panel C: Annualized Sharpe Ratio
1 0.66 0.08 -0.25 -0.25 -0.28 -0.31
2 0.62 0.51 0.11 -0.01 0.03 0.05
3 0.56 0.60 0.28 0.23 0.15 0.23
4 0.51 0.64 0.59 0.53 0.55 0.51
5 0.49 0.66 0.72 0.68 0.66 0.68
6 0.44 0.72 0.73 0.81 0.76 0.66
7 0.34 0.58 0.81 0.81 0.82 0.76
8 0.21 0.41 0.67 0.77 0.67 0.68
9 0.14 0.36 0.57 0.62 0.66 0.64
10 -0.03 0.33 0.46 0.57 0.70 0.61
10-1 -0.28 0.34 0.83 0.98 1.06 1.05

Table 9: No-Arbitrage Decile Portfolio Performance. This table reports the out-of-sample perfor-
mance of decile portfolios based on monthly sorts on the expected equity returns, from the six DSM
versions with αit set to zero. The table is structured the same way as Table 3.
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4 Conclusion

Using a novel modelling framework, coined Deep Structural Models (DSMs), I estimate con-

ditional monthly firm-level parameters of a Merton type model that allows for mispricing and

decomposes the total risk of the firm’s assets into a systematic and idiosyncratic component.

The framework suggests that systematic risk compensation is the largest contributor to the

average asset return, while the mispricing component is the primary driver of the dispersion

of asset returns. Furthermore, the effect of leverage on the asset returns of firms is the

main mechanism responsible for an increased equity premium during recessions. In fact, the

DSM indicate that both the asset drift and volatility remain unaffected by the onset of a

recession. The estimated parameters of the DSM jointly model the expected equity returns

and (co)variances through analytically derived expressions. The estimated expected equity

returns have higher predictive power than an “off-the-shelf” neural network model and the

DSM predictions enables investors to form long-short portfolios with higher out-of-sample

absolute returns and Sharpe ratios. Additionally, the variance predictions of the DSM have

higher predictive power than a GARCH(1,1) model. Finally, I use the estimated expected

returns and covariance matrix to construct leverage constrained and long-only mean vari-

ance efficient portfolios, re-balanced on a monthly basis. These portfolios have much higher

returns and Sharpe ratios than the long-short portfolios, indicating that the estimated con-

ditional covariance matrix does indeed carry relevant information about the covariances of

equity returns.
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A Proofs

A.1 Expected Equity Return

The expected equity value at time t+ 1 can be written as:

E[Eit+1] = E[(Vit+1 − Fit+1)1Vit+1>Fit+1
]

By the law of iterated expectation, this can be rewritten to:

E[Eit+1] = E
[
E[(Vit+1 − Fit+1)1Vit+1>Fit+1

|1Vit+1>Fit+1
= 1]

+ E[(Vit+1 − Fit+1)1Vit+1>Fit+1
|1Vit+1>Fit+1

= 0]
]

= (1− πit)E[(Vit+1 − Fit+1)|1Vit+1>Fit+1
= 1] + πit0

= (1− πit)(E[Vit+1|1Vit+1>Fit+1
= 1]− Fit+1)

Where the second equality comes from the fact that if 1Vit+1>Fit+1
= 0 then obviously (Vit+1−

Fit+1)1Vit+1>Fit+1
= 0. The third equality is from realizing that Fit+1 is a constant. Now

use the general result that if a random variable X is log-normally distributed, such that

ln(X) ∼ N (µ, σ2), then the expectation of X conditional on X ≥ K is:

E[X|X ≥ K] = exp

{
µ+

σ2

2

} Φ
(

µ−ln(K)+σ2

σ

)
1− Φ

(
ln(K)−µ

σ

)
Using this expression with µ = ln(Vit) + µit, σ = σit, and K = Fit+1 we can write the

expectation of Vit+1 conditional on Vit+1 ≥ Fit+1 as:

E[Vit+1|1Vit+1>Fit+1
= 1] = Vit exp{µit}

Φ

(
ln
(

Vit
Fit+1

)
+

(
µit−

σ2
it
2

)
+σ2

it

σit

)

1− Φ

(
ln
(

Fit+1
Vit

)
−
(
µit−

σ2
it
2

)
σit

)

= Vit exp{µit}
Φ (DDit + σit)

1− πit
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Inserting this in the equation for the expected terminal equity value, we get:

E[Eit+1] = (1− πit)

(
Vit exp{µit}

Φ (DDit + σit)

1− πit

− Fit+1

)
= Vit exp{µit}Φ (DDit + σit)− (1− πit)Fit+1

Finally, divide by Eit and subtract 1 to get the expected equity return:

E[rit+1] =
Vit

Eit

exp{µit}Φ (DDit + σit)− (1− πit)
Fit+1

Eit+1

− 1

A.2 Equity Return Covariance

The covariance between the terminal equity of firm i and j is:

Cov[Eit+1, Ejt+1] = E[Eit+1Ejt+1]− E[Eit+1]E[Ejt+1]

Since we know the value of E[Eit+1] and E[Ejt+1] from Appendix A.1, we only need to focus

on the first term, E[Eit+1Ejt+1]. From the law of iterated expectation, and the fact that

Eit+1 = (Vit+1 − Fit+1)1Vit+1>Fit+1
and Ejt+1 = (Vjt+1 − Fjt+1)1Vjt+1>Fjt+1

, we can write it as:

E[Eit+1Ejt+1] = E
[
E[(Vit+1 − Fit+1)1Vit+1>Fit+1

(Vjt+1 − Fjt+1)1Vjt+1>Fjt+1
|min[1Vit+1>Fit+1

,1Vit+1>Fit+1
] = 1]

+ E[(Vit+1 − Fit+1)1Vit+1>Fit+1
(Vjt+1 − Fjt+1)1Vjt+1>Fjt+1

|min[1Vit+1>Fit+1
,1Vit+1>Fit+1

] = 0]
]

= Pr[min[1Vit+1>Fit+1
,1Vit+1>Fit+1

] = 1]E[(Vit+1 − Fit+1)(Vjt+1 − Fjt+1)|min[1Vit+1>Fit+1
,1Vit+1>Fit+1

] = 1]

+ Pr[min[1Vit+1>Fit+1
,1Vit+1>Fit+1

] = 0]0

= (1− πit − πjt + Cov[1Vit+1<Fit+1
,1Vjt+1<Fjt+1

] + πitπjt)

× E[Eit+1Ejt+1|min[1Vit+1>Fit+1
,1Vit+1>Fit+1

] = 1]

Where the second equality is due to the fact that (ViT−Fi)1Vit+1>Fit+1
(Vjt+1−Fjt+1)1Vjt+1>Fjt+1

=

0 if either 1Vit+1>Fit+1
= 0 or 1Vjt+1>Fjt+1

= 0. For the third equality we utilize the fact that

the probability of at least one firm defaulting is E[1Vit+1<Fit+1∪Vjt+1<Fjt+1
] = πit + πjt −

Cov[1Vit+1<Fit+1
,1Vjt+1<Fjt+1

]− πitπjt. Inserting this into the equation for the covariance, we

get:

Cov[Eit+1, Ejt+1] = (1− πit − πjt + Cov[1Vit+1<Fit+1
,1Vjt+1<Fjt+1

] + πitπjt)

× E
[
Eit+1Ejt+1|min[1Vit+1>Fit+1

,1Vjt+1>Fjt+1
] = 1

]
− E[Eit+1]E[Ejt+1]
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Finally, we divide by EitEjt to obtain the return covariance:

Cov[rit+1, rjt+1] = (1− πit − πjt + Cov[1Vit+1<Fit+1
,1Vjt+1<Fjt+1

] + πitπjt)

× 1

EitEjt

E
[
Eit+1Ejt+1|min[1Vit+1>Fit+1

,1Vjt+1>Fjt+1
] = 1

]
− (1 + E[rit+1])(1 + E[rjt+1])

B DSM Implementation Details

B.1 The DSM Loss Function

Let the total set of parameters for the DSM be denoted θDSM = [θα,θβ,θλ,θϵ]. Then, the

optimal set of parameters, θ̂DSM , are found by minimizing some loss function, L(·,θDSM),

over some sample, S:

θ̂DSM = argmin
θDSM

L(S;θDSM)

The basis for our loss function will be the negative log likelihood of observing the realized

equity returns of the S sample:

LLL(S;θDSM) = −
∑

(i,t)∈S

ln
(
Lr

it+1(rit+1;θ
DSM)

)
However, as is common in the machine learning literature, a parameter penalty term,

LP (θDSM), is added to avoid overfitting. Here, the parameter penalty is chosen to be the

ℓ1-norm of the parameter vector:

LP (θDSM) = ||θDSM ||1

Additionally, since we are estimating the parameters of a structural model, it is possible to

implement what can best be described as economically motivated parameter penalties. This

could either be outright restrictions or a set of penalties on the size or sign of the parameters.

Here, the only economically motivated parameter penalty is a penalty on the variance of the
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ℓ2-norm of λt:
20

LE(λt|S) = VarS
[
||λt||2

]
Where the S subscript indicates that the variance is calculated over the sample, S. The

complete DSM loss function can thereby be expressed as:

L(S;θDSM) =

TS∑
t=1

It∑
i=1

LLL(S;θDSM) + wPLP (θDSM) + wELE(λt|S)

Where t ∈ 1, ..., TS , with TS being the number of cross-sections in S, It is the number of

firms in cross-section t, and wP and wE is the weight given to the parameter penalty term

and the economically motivated penalty, respectively.

B.2 The DSM Training Procedure

The algorithm used to train the DSM, i.e. minimize the loss function, is the Adam algorithm

of Kingma and Ba (2014), with batch sizes of 10,000. The learning rate of the algorithm

follows a decaying schedule, in which it is reduced by 5% after each epoch. The initial

learning rate is set to 10−2, and the learning rate decay stops when/if it reaches 10−4. In

addition to the penalties described in Appendix B.1, the training procedure also involves

other regularization techniques. Specifically, the parameter functions, shown in Figure 2,

also employ batch normalization (Ioffe and Szegedy (2015)) and dropout (Srivastava, Hin-

ton, Krizhevsky, Sutskever, and Salakhutdinov (2014)).21 When training the DSM, the total

dataset is split into a training, validation and test dataset. The actual training procedure,

outlined above, is done on the training data, while the validation data is used for early

stopping and choosing the optimal set of hyperparameters. The early stopping procedure

terminates training when the loss function has not improved across the validation data for

10 epochs. The choice of the optimal hyperparameters are determined through a grid search.

That is, for the two hyperparameters of the model, wP and wE, the DSM is trained for all

20This particular penalty seem to be important to avoid overfitting on the training data. Other econom-
ically motivated parameter penalties have been tested, such as a penalizing high values of the mispricing
term, αit, encouraging a positive risk compensation, βT

itλt, etc. Yet, they all lead to a worse performance
score on the validation and test data.

21The dropout rate could be treated as a hyperparameter but is fixed in this paper to 0.5 for the sake of
simplicity and computational costs.
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combinations of wP ∈ 10−3, 10−4, 10−5 and wE ∈ 10−5, 10−6, 0, and the set of hyperparam-

eters with the lowest loss function value, across the validation data, is chosen. Finally, the

optimal solution is sensitive to the choice of starting parameters and so 10 DSMs are trained

and the final model output is the average across the 10 models. For the neural network

benchmark model in Section 3.3, the training procedure is identical to that of the DSM,

with two changes: The loss function is the mean squared error, MSE = (rit+1 − r̂it+1)
2, and

the hyperparameter grid search only involves searching across wP ∈ 10−3, 10−4, 10−5.

All models are trained on a rolling one year basis. After training the models on the initial

training and validation set, predictions are made for all months in the first year of the test

set. Then, the validation set is rolled forward one year, such that the training data grows

by one year, the validation data has the same length in years, and the test data shrinks by

one year. The models are then re-estimated using this new training and validation split and

predictions are made on the first 12 months of the new test data. This process continues

until all observations of the initial test data has a set of model predictions.

C Data Preprocessing

As is standard in the financial machine learning literature, the 153 firm characteristics are

ranked at each cross-section and then transformed to lie in the [−1, 1] range. The 45 macroe-

conomic variables are discretized based on the combined training and validation data and

then, similarly to the firm characteristics, transformed to lie in the [−1, 1] range. That

is, for each macroeconomic variable, all observations are assigned a value between one and

ten, based on a decile sort of the combined training and validation data, meaning that no

information in the test data is used for the discretization process. Then, each macroeco-

nomic variables is squeezed into the [−1, 1] range. Both the equity returns and the monthly

“realized” variances in Section 3.4 have been winsorized at the 99.99th percentile, using

information from the entire data set, to exclude the most extreme outliers. Finally, the

Compustat values for short-term debt, F SD
it+1, and long-term debt, FLD

it+1, have been modified

to minimize the effect of extremely levered firms:

1. All negative values of F SD
it+1 and FLD

it+1 are set to zero.
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2. A simple short-term and long-term leverage value is calculated as LSD
it+1 =

FSD
it+1

Eit
and

LLD
it+1 =

FLD
it+1

Eit
, respectively.

3. Both LSD
it+1 and LLD

it+1 are cross-sectionally winsorized at the 98th percentile.

4. The final values for F SD
it+1 and FLD

it+1 are then calculated based on the winsorized lever-

ages, i.e. F SD
it+1 = EitL

SD
it+1 and FLD

it+1 = EitL
LD
it+1.

40


	Introduction
	Model
	A General Model
	Simplifying Assumptions
	Model Implications
	Default Implications
	Equity Implications

	Empirical Implementation

	Empirical Results
	Data
	The Estimated Model Parameters
	Equity Return Prediction
	Equity Return Variance Prediction
	Mean-Variance Efficient Portfolios
	Enforcing No-Arbitrage

	Conclusion
	Proofs
	Expected Equity Return
	Equity Return Covariance

	DSM Implementation Details
	The DSM Loss Function
	The DSM Training Procedure

	Data Preprocessing

