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Abstract

We propose a model that addresses two fundamental challenges concerning the
timing and pricing of uncertainty: established equilibrium asset pricing models re-
quire a controversial degree of preference for early resolution of uncertainty; and do
not generate the downward-sloping term structure of risk premia suggested by the
data. Inspired by experimental evidence, we construct dynamically inconsistent pref-
erences in which risk aversion decreases with the temporal horizon. The resulting
pricing model can generate a term structure of risk premia consistent with empiri-
cal evidence, without forcing a particular preference for resolution of uncertainty or
compromising the ability to match standard moments.
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1 Introduction

The finance literature has been successful in explaining many features of observed equi-
librium asset prices as well as their dynamics (Cochrane, 2016). However, recent work has
posed two puzzles concerning the timing and the pricing of uncertainty. First, empirical
evidence shows unexpected patterns in the pricing of risk in the term structure, suggest-
ing that average risk premia are higher for short-term risks than for long-term risks (e.g.
van Binsbergen, Brandt, and Koijen, 2012; Giglio, Maggiori, and Stroebel, 2014).1 These
findings pose a fundamental challenge because they are inconsistent with established as-
set pricing models: the term structure of risk premia is upward-sloping in the widely used
long-run risk model of Bansal and Yaron (2004) as well as in the habit-formation model
of Campbell and Cochrane (1999), whereas the term structure is flat in the rare disaster
models of Gabaix (2012) and Wachter (2013). Second, the long-run risk model has recently
come under attack also on conceptual grounds: Epstein, Farhi, and Strzalecki (2014) show
that calibrating the model to match asset pricing moments requires a surprisingly strong
preference for early resolution of uncertainty, which the authors argue is di�cult to rec-
oncile with the limited micro evidence and introspection.

A conceptually sound and empirically consistent framework for understanding the
pricing of risk at di�erent horizons is important for various fields in economics beyond
asset pricing and has immediate policy implications, e.g. for climate change policy (Gol-
lier, 2013; Giglio, Maggiori, Stroebel, and Weber, 2015). To address these challenges, we
propose a model that relaxes the assumption, standard in the economics literature, that
risk aversion is constant across temporal horizons. Inspired by experimental evidence,2 we
generalize Epstein and Zin (1989) preferences to accommodate the case of agents that are
more averse to immediate than to delayed risks. Doing so renders preferences dynamically
inconsistent with respect to risk-taking, which makes the existing toolbox of asset pricing
inapplicable.3 We therefore investigate how existing tools can be generalized, and if such
a generalization is useful for understanding the empirical patterns concerning the timing
and pricing of risk. We find that combining the standard long-run risk endowment econ-
omy and a representative agent with horizon-dependent risk aversion can address both
challenges: the model can speak to the recent empirical evidence on the term structure of

1For a review of the literature, see van Binsbergen and Koijen (2016).
2Jones and Johnson (1973); Onculer (2000); Sagristano et al. (2002); Noussair and Wu (2006); Coble and

Lusk (2010); Baucells and Heukamp (2010); Abdellaoui et al. (2011).
3Eisenbach and Schmalz (2016) show in a static model with time-separable utility that horizon-dependent

risk aversion is conceptually orthogonal to other non-standard preferences such as time-varying risk aver-
sion (Constantinides, 1990; Campbell and Cochrane, 1999) or non-exponential time discounting (Phelps and
Pollak, 1968; Laibson, 1997).
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risk premia—while still matching the usual asset pricing moments—and it can also mit-
igate (or even reverse) the implied preference for early resolution of uncertainty. Hence,
the long-run risk model can be adapted to address both challenges raised by the recent
literature.

The paper makes three contributions. The first contribution is methodological. We
show that commonly used recursive techniques can be adapted to a setting of pseudo-
recursive preferences with horizon-dependent risk aversion while still allowing for closed-
form solutions. Our framework generalizes the standard recursive utility model of Epstein
and Zin (1989) and thus builds on the success of the separation of risk and time preferences
when combined with long-run risk to explain asset pricing moments. We can accommo-
date numerous extensions, be it on the valuation of risk (habit, disappointment aversion,
loss aversion, etc.), or on the quantity of risk (rare disasters, production-based models,
etc.). Further, our model implies dynamically inconsistent risk preferences while maintain-
ing dynamically consistent time preferences: intra-temporal allocations across risky assets
depend on horizon-dependent risk aversion; but intertemporal decisions for deterministic
payo�s are unchanged from the standard, time consistent model. We can therefore study
the pricing impact of horizon dependent risk aversion in isolation from quasi-hyperbolic
discounting, which has only limited implications for asset pricing (Harris and Laibson,
2001; Luttmer and Mariotti, 2003).

The second contribution concerns the preferences for early or late resolution of uncer-
tainty. Specifically, we formally derive how two consumption streams with ex-ante identi-
cal risk but di�erent timing for the resolution of uncertainty are valued. As in the model of
Epstein and Zin (1989), our agents value these consumption streams di�erently. Whether
and how the relative valuations di�er depends on the degree of horizon dependent risk
aversion. In a standard long-run risk framework that uses Epstein and Zin (1989) prefer-
ences, the level of risk aversion and elasticity of intertemporal substitution that are neces-
sary to match observed asset pricing moments imply that agents have a seemingly exces-
sive preference for early resolutions of uncertainty (Epstein et al., 2014). In contrast, our
model not only mitigates but can even reverse this result: we are able to calibrate both
asset pricing moments and reasonable preferences for either early or late resolution of
uncertainty.

As a third contribution, we apply our utility model and methodology to equilibrium
asset pricing, with a particular focus on the term structure of risk premia. In the spirit of
Strotz (1955), we assume that our agents are perfectly rational and aware of their horizon-
dependent risk aversion preferences. We consider a representative agent who trades and
clears the market every period, and, as such, cannot pre-commit to any specific strategy:
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unable to commit to future behavior but aware of her dynamic inconsistency, the agent
optimizes in the current period, fully anticipating re-optimization in future periods. Solv-
ing our model this way yields a one-period pricing problem in which the Euler equation
is satisfied.

Obtaining a decreasing term structure of risk premia from a model with a decreasing
term structure of risk aversion may seem trivial. However, solving the problem is far from
tautological. The agent’s choices, and thus equilibrium prices, are determined dynami-
cally from one period to the next. At time t, the agent chooses how to allocate her wealth
between t and t + 1—a time frame over which only her immediate risk aversion matters:
in this context, why and how horizon-dependent risk aversion should a�ect pricing is a
complex question, with non-obvious answers. We formally derive the stochastic discount
factor of our pseudo-recursive model, and show that it nests the standard Epstein and
Zin (1989) case, with a new multiplicative term arising from the preferences’ dynamic
inconsistency. The new term reflects the wedge between the continuation value used for
optimization at any period t and the actual valuation at t + 1. Its impact on risk prices is
rather subtle.

We investigate the implications of our model both on the level and on the slope of the
term structure of risk premia in a Lucas-tree endowment economy. Horizon-dependent
risk aversion does not concern inter-temporal decisions. As such, we formally show that
both the risk-free rate and the pricing of shocks that impact consumption levels are un-
changed from the standard model. Further, if risk is constant in the economy, equilibrium
asset prices are una�ected by our model of dynamically inconsistent risk preferences. By
contrast, the pricing of shocks that impact consumption risk, or volatility, are modified by
horizon-dependent risk aversion. In a standard log-normal consumption growth setting
with stochastic volatility, our model can simultaneously match the average level of risk
prices and generate a downward-sloping term structure of risk premia (van Binsbergen
et al., 2012, 2013; van Binsbergen and Koijen, 2016).

In sum, we develop a new model that can address both the “early versus late resolution
of uncertainty” puzzle of Epstein et al. (2014) as well as the observed term structure of risk
premia, a puzzle first emphasized by van Binsbergen et al. (2012). The success at solving
these hotly debated problems regarding the timing and pricing of uncertainty is achieved
without compromising the model’s ability to match the usual asset pricing moments as in
Bansal and Yaron (2004), and without departing significantly from the widely-used pref-
erence structure of Epstein and Zin (1989).

After a short overview of the literature, we present our model of preferences in Section
3. We analyze the preference for early or late resolution of uncertainty in Section 4. In
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Section 5, we derive the stochastic discount factor and the formal risk pricing formulas of
our model. Section 6 presents and discusses the models’ quantitative predictions. Section
7 concludes.

2 Related literature

This paper is the first to solve for equilibrium asset prices in an economy populated by
agents with dynamically inconsistent risk preferences. It complements Luttmer and Mari-
otti (2003), who show that dynamically inconsistent time preferences of the kind examined
by Harris and Laibson (2001) have little power to explain cross-sectional variation in asset
returns. Given that cross-sectional asset pricing involves intra-period risk-return trade-
o�s, it is indeed quite intuitive that horizon-dependent time preferences are not suitable
to address puzzles related to risk premia.

Our model generalizes Epstein and Zin (1989) preferences by relaxing the dynamic con-
sistency axiom of Kreps and Porteus (1978) to analyze the subtle relationship between the
timing and pricing of uncertainty. By contrast, Routledge and Zin (2010), Bonomo et al.
(2011) and Schreindorfer (2014) follow Gul (1991) and relax the independence axiom of
Kreps and Porteus (1978) to analyze the asset pricing impact of generalized disappoint-
ment aversion within a recursive framework. They find their model generates endogenous
predictability (Routledge and Zin, 2010); matches various asset pricing moments (Bonomo
et al., 2011); prices the cross-section of options better than the standard model (Schrein-
dorfer, 2014). Their models, however, do not address the “excessive preference for early
resolutions of uncertainty puzzle”, pointed out by Epstein et al. (2014) or quantitatively
match the term structure of risk prices.4

Our formal results on the term structure of risk pricing are consistent with patterns
uncovered by the recent empirical literature. Van Binsbergen et al. (2012) show that the
expected excess returns for short-term dividend strips are higher than for long-term divi-
dend strips (see also Boguth et al., 2012; van Binsbergen and Koijen, 2011; van Binsbergen
et al., 2013). Van Binsbergen and Koijen (2016) review the recent literature documenting
downward sloping Sharpe ratios of risky assets’ excess returns, across a variety of markets.
Giglio et al. (2014) show a similar pattern exists for discount rates over much longer hori-
zons using real estate markets. Lustig et al. (2016) document a downward-sloping term
structure of currency carry trade risk premia. Weber (2016) sorts stocks by the duration

4Just like the standard Epstein and Zin (1989) model, our model can accommodate generalized disap-
pointment aversion for the valuation of risk. Such a framework might be of interest for future research.
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of their cash flows and finds significantly higher returns for short-duration stocks. Dew-
Becker et al. (2016) use data on variance swaps to show, first, that volatility risk is priced
(crucial to our model), and second, that investors mostly price it at the 1-month horizon
and are essentially indi�erent to news about future volatility at horizons ranging from 1
month to 14 years. Using di�erent methodologies and standard index option data, An-
dries et al. (2016) find a negative price of variance risk for maturities up to 4 months, and a
strongly nonlinear downward sloping term structure (in absolute value). The importance
of a volatility risk channel, central to our qualitative and quantitative asset pricing results,
for other asset pricing implications is supported by Campbell et al. (2016), who show that
it is an important driver of asset returns in a CAPM framework, and relates to numerous
other works on the relation between volatility risk and returns (Ang et al., 2006; Adrian and
Rosenberg, 2008; Bollerslev and Todorov, 2011; Menkho� et al., 2012; Boguth and Kuehn,
2013).

While the empirical findings concerning the term structure of risk premia are not un-
controversial—it is as of yet uncertain how robust through time some of the evidence will
be—they are provocative enough to have triggered a significant literature that aims to
explain these patterns. Our model of preferences implies a downward sloping pricing of
risk in a simple endowment economy. By contrast, other approaches typically generate the
desired implications by making structural assumptions about the economy or about the
priced shocks driving the stochastic discount factor directly. For example, in a model with
financial intermediaries, Muir (2016) uses time-variation in institutional frictions to ex-
plain why the term structure of risky asset returns changes over time. Ai et al. (2015) derive
similar results in a production-based real business cycle model in which capital vintages
face heterogeneous shocks to aggregate productivity; Zhang (2005) explains the value pre-
mium with costly reversibility and a countercyclical price of risk. Other production-based
models with implications for the term structure of equity risk are, e.g. Kogan and Pa-
panikolaou (2010, 2014), and Gârleanu et al. (2012). Favilukis and Lin (2015), Belo et al.
(2015), and Marfe (2015) o�er wage rigidities as an explanation why risk levels and thus
risk premia could be higher at short horizons. Croce et al. (2015) use informational fric-
tions to generate a downward-sloping equity term structure. Backus et al. (2016) propose
the inclusion of jumps to account for the discrepancy between short-horizon and long-
horizon returns. By contrast, our contribution is about risk prices, and, though we derive
predictions under standard log-normal consumption growth with time-varying volatil-
ity, our framework can accommodate other risk evolutions, such as those employed in the
above-cited work. Our methodology is thus broadly applicable.

Other models focusing on the price, rather than the quantity, of risk are Andries (2015)
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and Curatola (2015) who propose preferences with first order-risk aversion to explain the
observed term structure patterns; or Khapko (2015) and Guo (2015), who both study other
dynamic extensions to Eisenbach and Schmalz (2016). However, they do so in a time-
separable model, which confounds dynamically inconsistent risk preferences with dy-
namically inconsistent time preferences (hyperbolic discounting). That approach makes
the two ingredients’ relative contributions opaque. Further, the approach does not accom-
modate formal solutions, and thus formal interpretations. Chabi-Yo (2016) uses a two-
period model to derive higher order conditions on utility over final wealth such that the
term structure of volatility risk premia is downward-sloping (in absolute value), and upward-
sloping in the bond market.

All of the above mentioned work focuses on matching the recently found evidence on
the term structure of risk prices. None of the cited papers addresses the challenge raised
by Epstein et al. (2014) regarding the seemingly excessive preference for early resolution
implied by the standard models. Our paper addresses both puzzles.

3 Preferences with horizon-dependent risk aversion

We generalize the model of Epstein and Zin (1989) by relaxing the dynamic consistency
axiom of Kreps and Porteus (1978). To simplify exposition, we present the model with two
levels of risk aversion g,

˜g with g > ˜g. Appendix A has the model for general sequences
{gh}h�1

of risk aversion at horizon h. Here, we assume that the agent treats immediate
uncertainty with risk aversion g, and all delayed uncertainty with risk aversion ˜g, where
g > ˜g � 1. Our approach with only two levels of risk aversion is analogous to the b-d
framework (Phelps and Pollak, 1968; Laibson, 1997) as a special case of the general non-
exponential discounting framework of Strotz (1955).

The benefit of using the non-separable utility specification of Epstein and Zin (1989)
is to disentangle the risk aversion from the elasticity of intertemporal substitution, two
features of preferences that are conceptually distinct but artificially linked in the standard
model with time-separable utility. However, standard Epstein and Zin (1989) are dynami-
cally consistent (by definition). We modify the model to introduce horizon-dependent risk
aversion, and assume that the agent’s utility in period t is given by

Vt =

✓
(1 � b)C1�r

t + bEt
⇥

˜V1�g
t+1

⇤ 1�r
1�g

◆ 1

1�r

, (1)
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where the continuation value ˜Vt+1

satisfies the recursion

˜Vt+1

=

✓
(1 � b)C1�r

t+1

+ bEt+1

⇥
˜V1� ˜g
t+2

⇤ 1�r
1� ˜g

◆ 1

1�r

. (2)

As in the Epstein-Zin model, utility Vt depends on the deterministic current consump-
tion Ct and on the certainty equivalent Et

⇥
˜V1�g
t+1

⇤ 1

1�g of the uncertain continuation value
˜Vt+1

, where the aggregation of the two periods occurs with constant elasticity of intertem-
poral substitution given by 1/r. However, in contrast to the Epstein-Zin model, the cer-
tainty equivalent of consumption starting at t + 1 is calculated with relative risk aversion
g, wherein the certainty equivalents of consumption starting at t + 2 and beyond are cal-
culated with relative risk aversion ˜g.

This is the concept of horizon-dependent risk aversion applied to the recursive valu-
ation of certainty equivalents, as in the Epstein-Zin model, but with risk aversion g for
imminent uncertainty and risk aversion ˜g for delayed uncertainty. Our model nests the
Epstein-Zin model if we set g = ˜g, and, in turn, nests the standard CRRA time-separable
model if g = ˜g = r.

The horizon-dependent valuation of risk implies a dynamic inconsistency, as the un-
certain consumption stream starting at t+ 1 is evaluated as ˜Vt+1

by the agent’s self at t and
as Vt+1

by the agent’s self at t + 1:

˜Vt+1

=

✓
(1 � b)C1�r

t+1

+ bEt+1

⇥
˜V1� ˜g
t+2

⇤ 1�r
1� ˜g

◆ 1

1�r

6= Vt+1

=

✓
(1 � b)C1�r

t+1

+ bEt+1

⇥
˜V1�g
t+2

⇤ 1�r
1�g

◆ 1

1�r

(3)

Crucially, this disagreement between the agent’s continuation value ˜Vt+1

at t and the
agent’s utility Vt+1

at t + 1 arises only for uncertain consumption streams. For any deter-

ministic consumption stream the horizon-dependence in (1) becomes irrelevant and we
have

˜Vt+1

= Vt+1

=
⇣
(1 � b)Âh�0

bhC1�r
t+1+h

⌘ 1

1�r
.

Our model therefore implies dynamically inconsistent risk preferences while maintaining
dynamically consistent time preferences. The results we obtain in the analysis that follows
can be attributed to horizon dependent risk aversion, orthogonal to extant models of time
inconsistency, such as hyperbolic discounting.

In order to analyze the dynamic choices of our time-inconsistent agent, we follow the
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tradition of Strotz (1955), and assume that she is fully rational and sophisticated about her
preferences when making choices in period t to maximize Vt. Self t realizes that its valua-
tion of future consumption, given by ˜Vt+1

, di�ers from the objective function Vt+1

which
self t + 1 will maximize. The solution then corresponds to the subgame-perfect equilib-
rium in the sequential game played among the agent’s di�erent selves (see Appendix B).

An alternative approach to solving the model would be to assume that the agent is
naive about the disagreement between her temporal selves, and, at t, thinks of ˜Vt+1

as
the objective function she will optimize at t + 1. The valuation of early versus late reso-
lutions of uncertainty, a static problem, is, naturally, the same for naive and sophisticated
investors. Moreover, analyzing the di�erences in the pricing of risk for naive versus so-
phisticated representative investors does not present any conceptual challenge, and we
find that, in many cases, including the one we consider in quantitative Section 6, the asset
pricing implications are the same.

Yet another approach would be to let the sophisticated agent commit to certain strate-
gies. Studying the di�erences between optimization with or without commitment is in-
teresting when dealing with individual decision making under horizon-dependent risk
aversion (see Eisenbach and Schmalz, 2016). However, such an approach is not appropri-
ate for the analysis of a representative agent who trades and clears the market at all times,
and cannot pre-commit to a strategy. In our analysis of equilibrium asset prices, we there-
fore focus on the fully sophisticated case with no commitment, similar to the approach of
Luttmer and Mariotti (2003) for non-geometric discounting.

4 Preference for early or late resolution of uncertainty

Because risk aversion is disentangled from the elasticity of intertemporal substitution, in
the preferences of Epstein and Zin (1989), as well as in the pseudo-recursive model of
equations (1) and (2), two consumption streams with ex-ante identical risks, but di�erent
timing for the resolution of uncertainty, can have di�erent values. Calibrations tailored
to match various asset pricing moments, e.g. Bansal and Yaron (2004) for the model of
Epstein and Zin (1989) or Section 5 for ours, have strict implications for the relative values
of early versus late resolutions of uncertainty.

An agent with Epstein-Zin preferences strictly prefers an early resolution of uncer-
tainty if and only if g > r. Epstein et al. (2014) point out that the parameters commonly
used in the long-run risk literature imply too strong a preference for early resolutions of
uncertainty. For example, in the calibration of Bansal and Yaron (2004), the representa-
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tive agent would be willing to forgo up to 35% of her consumption stream in exchange
for all uncertainty to be resolved the next month instead of gradually over time. Epstein
et al. (2014) argue that this “timing premium” seems excessive, especially since the ex-
ante amount of risk is unchanged by an early rather than late resolution of uncertainty:
the agent cannot act on early information to change the consumption stream she will re-
ceive. Besides, in numerous cases, in both the empirical and the theoretical literatures,
agents prefer not to observe early information, even when they can act on it, suggesting
a preference for late rather than early resolution of uncertainty (see Golman et al., 2016;
Andries and Haddad, 2015). This makes the magnitude of the timing premium under the
standard long-run risk model all the more puzzling.

As in Epstein et al. (2014), we assume a unit elasticity of intertemporal substitution,
r = 1, and log-normal consumption growth with time varying drift, i.e. long-run risk, to
replicate their formal analysis under our assumption of horizon-dependent risk aversion.
Using lower-case letters to denote logs, i.e. ct = log Ct, vt = log Vt, ˜vt = log

˜Vt, we have:

ct+1

� ct = µc + fcxt + acsWc,t+1

(4)
xt+1

= nxxt + axsWx,t+1

The drift is stationary, i.e. nx is contracting. For simplicity, we assume xt is one-dimensional
and the shocks ac and ax are orthogonal.

Lemma 1. An agent with horizon-dependent risk aversion g > ˜g � 1 and r = 1 values the

consumption process (4) as

vt = ct +
b

1 � b
µc +

bfc

1 � bnx
xt +

1

2

�
1 � g + b (g � ˜g)

� b

1 � b
a2

vs2

,

where a2

v = a2

c +
⇣

bfc
1�bnx

⌘
2

a2

x.

Consumption risk is treated with an “e�ective risk aversion” given by

g � b (g � ˜g) < g.

This e�ective risk aversion is the initial risk aversion g net of the discounted decline in
risk aversion between imminent and delayed risk, and is therefore lower than g itself. The
risk in the consumption stream, as represented by the volatility s, is less penalized than in
the standard model with g = ˜g, as only part of it is immediate and subject to a high risk
aversion.
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Denoting by V⇤
t the agent’s utility at t if all uncertainty (i.e. the entire sequence of

shocks {Wt}t�t+1

in the consumption process (4)) is resolved at t + 1, Epstein et al. (2014)
define the timing premium as the fraction of utility the agent is willing to pay for the early
resolution of uncertainty:

TP

t

=
V⇤

t � Vt

V⇤
t

Proposition 1. The timing premium for an agent with horizon-dependent risk g > ˜g � 1 aversion

and r = 1, facing the consumption process (4) is

TP = 1 � exp

✓
1

2

�
1 � g + (1 + b) (g � ˜g)

� b2

1 � b2

a2

vs2

◆
.

Compared to the timing premium for an Epstein-Zin agent with risk aversion g, TP|g= ˜g =

1 � exp

�
1

2

(1 � g) b2

1�b2

a2

vs2

�
, the timing premium for an agent with horizon dependent

risk aversion is lower since
g � (1 + b) (g � ˜g) < g.

Our model unambiguously reduces the timing premium.
The lower timing premium is partially due to the lower “e�ective risk aversion” of

an agent with horizon dependent risk aversion (Lemma 1). In addition, a consumption
stream with an early resolution of uncertainty concentrates all the risk on the first period,
over which the agent is the most risk averse, with immediate risk aversion g. In contrast, a
consumption stream with late resolution of uncertainty has risk spread over multiple hori-
zons, over some of which the agent is moderately risk averse, with risk aversion ˜g < g.
This has important implications for whether or not the agent prefers early or late resolu-
tion.

Consider cases when the timing premium turns negative, indicating a preference for
late resolution. For an Epstein-Zin agent, this happens when g < r. In our model, however,
the timing premium turns negative when

g < 1 + (1 + b) (g � ˜g) . (5)

Corollary 1. An agent with horizon-dependent risk aversion can prefer late resolution of the con-

sumption process (4) even when all risk aversions exceed the inverse elasticity of intertemporal

substitution, i.e. when g > ˜g > r.

Since, for g > ˜g, the right-hand side of (5) is greater than r = 1, the agent with horizon-
dependent risk aversion can have a preference for late resolution, even when both risk aver-
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sions g and ˜g are greater, even considerably so, than the inverse elasticity of intertemporal
substitution, as long as the decline in risk aversion across horizons is su�ciently large. For
example, suppose we set immediate risk aversion g = 10 and b close to 1. Then the agent
will prefer uncertainty to be resolved late rather than early according to condition (5) as
long as ˜g < 5.5 which is substantially larger than r = 1.

The result of Corollary 1 is of particular interest because extant calibrations of the long-
run risk model with Epstein and Zin (1989) preferences require g greater than r by an or-
der of magnitude, to match equilibrium asset pricing moments. Under horizon-dependent
risk aversion, such a calibration for g and r, combined with long-run risk, no longer auto-
matically implies an excessive preference for early resolutions of uncertainty, as we show
in Section 6, when we consider the joint quantitative implications for asset pricing mo-
ments, term structures, and preferences for early or late resolution of uncertainty.

5 Pricing of risk and the term structure

We now turn to the marginal pricing of risk in our model, in a standard consumption-
based asset pricing framework. We assume a fully sophisticated representative agent, who
re-optimizes every period, and thus cannot commit, similar to the approach of Luttmer
and Mariotti (2003). All decisions are made in sequential one-period problems, raising
the question whether the term structure of risk aversions beyond the first period is rele-
vant at all for pricing. We formally analyze whether it is the case, and if yes, how horizon
dependent risk aversion impacts equilibrium prices.

5.1 Stochastic discount factor

For asset pricing purposes, the object of interest is the stochastic discount factor (SDF)
resulting from the preferences in equations (1) and (2). To satisfy the one-period Euler
equation, the SDF’s derivation is based on the intertemporal marginal rate of substitution:

Pt,t+1

=
dVt/dWt+1

dVt/dCt
.

We decompose the marginal utility of next-period wealth as dVt
dWt+1

= dVt
d ˜Vt+1

⇥ d ˜Vt+1

dWt+1

,
and appeal to the envelope condition at t + 1: dVt+1

/dWt+1

= dVt+1

/dCt+1

. Note the
envelope condition does not apply to ˜Vt+1

, the value self t attaches to future consumption,
but to Vt+1

, the objective function of self t + 1. However, due to the homotheticity of our
preferences, we can rely on the fact that both ˜Vt+1

and Vt+1

are homogeneous of degree

11



one in wealth:
d ˜Vt+1

/dWt+1

dVt+1

/dWt+1

=
˜Vt+1

Vt+1

.

This allows us to formally derive the SDF as:

Pt,t+1

=
dVt+1

/dCt+1

dVt/dCt
⇥ dVt

d ˜Vt+1

⇥
˜Vt+1

Vt+1

.

Proposition 2. An agent with horizon-dependent risk aversion preferences (1) and (2) has a one-

period stochastic discount factor given by

Pt,t+1

= b

✓
Ct+1

Ct

◆�r

| {z }
(I)

⇥

0

@
˜Vt+1

Et
⇥

˜V1�g
t+1

⇤ 1

1�g

1

A
r�g

| {z }
(II)

⇥
✓

˜Vt+1

Vt+1

◆
1�r

| {z }
(III)

. (6)

The SDF consists of three multiplicative parts. The first term (I) is standard, capturing
intertemporal substitution between t and t+ 1, and is governed by the time discount factor
b and the EIS 1/r.

The second term (II) captures uncertainty realized in t + 1, comparing the ex-post real-
ized t + 1 utility ˜Vt+1

to its ex-ante certainty equivalent Et
⇥

˜V1�g
t+1

⇤ 1

1�g ; both the comparison
as well as the certainty equivalent are evaluated with immediate risk aversion g. This term
is similar to the corresponding one in Epstein-Zin except that the t + 1 utility is that of self
t ( ˜Vt+1

) and not that of self t + 1 (Vt+1

).
Finally, the third term (III) directly captures the disagreement between self t and self t+

1 by comparing their t + 1 utility. Since self t values future consumption uncertainty with
lower risk aversion than self t+ 1, the ratio ˜Vt+1

/Vt+1

is greater than 1 and increasing in the
disagreement between the two selves. Assets that pay o� in states where the disagreement
is large are valued highly by self t since they partially compensate for the decisions self
t + 1 takes based on Vt+1

compared to the ones self t would prefer based on ˜Vt+1

.
Horizon-dependent risk aversion a�ects the pricing of shocks through terms (II) and

(III) in the stochastic discount factor of equation (6). Comparing the expressions for Vt+1

and ˜Vt+1

in equation (3), we see that the two selves do not disagree about the e�ect of Ct+1

on t+ 1 utility so shocks to Ct+1

will not be priced di�erently than in standard Epstein-Zin.
The two selves do, however, disagree about the e�ect of uncertainty realized at t + 2 on
t+ 1 utility, and horizon-dependent risk aversion can therefore a�ect the pricing of shocks
to the value function: shocks to t + 1 utility will be priced di�erently than in Epstein-Zin,
to the extent that self t and self t + 1 disagree about their impact, i.e. to the extent that

12



˜Vt+1

’s impulse responses di�er from those of Vt+1

.

Asset liquidity Proposition 2 assumes retrading in every period, i.e. fully liquid assets,
as appropriate for the asset pricing moments we consider in Section 6. In dynamically con-
sistent models, this is an innocuous assumption: the SDF for pricing an asset at t that can
be retraded at t + 2 is the same as the product of the SDF between t and t + 1 with the SDF
between t + 1 and t + 2. For dynamically inconsistent preferences however, illiquidity is
similar to a form of forced commitment. In Appendix B, we derive the two-period stochas-
tic discount factor Pt,t+2

, and show how it di�ers from the product of the two one-period
stochastic discount factors Pt,t+1

Pt+1,t+2

. The pricing impact of our form of dynamic in-
consistency therefore di�ers for liquid and illiquid assets.

Agent sophistication If the agent is naive about her time-inconsistency, she wrongly
assumes that the the envelope condition at t + 1 applies to ˜Vt+1

and her SDF becomes:

Pnaive
t,t+1

= b

✓
Ct+1

Ct

◆�r
0

@
˜Vt+1

Et
⇥

˜V1�g
t+1

⇤ 1

1�g

1

A
r�g

This naive SDF is equal to the sophisticated one in equation (6) when r = 1: for unit elas-
ticity of intertemporal substitution, naive and sophisticated agents have same risk prices.

Closed form solutions To derive closed-form solutions for the pricing of risk under
horizon-dependent risk aversion, we again focus on the case of unit elasticity of intertem-
poral substitution.5 Further, we maintain the standard Lucas-tree endowment economy
but generalize the consumption process (4) by adding stochastic volatility, in line with the
long-run risk literature (e.g. Bansal and Yaron, 2004; Bansal et al., 2009):

ct+1

� ct = µc + fcxt + acstWc,t+1

xt+1

= nxxt + axstWx,t+1

(7)

s2

t+1

= s2 + ns

⇣
s2

t � s2

⌘
+ asstWs,t+1

Both state variables are stationary, i.e. nx and ns are contracting with ns < 1 � 1

2

a2

s/s2.
For simplicity, we assume xt is one-dimensional and the three shocks ac, ax, and as are

5In Appendix D, we consider r 6= 1 and the approximation of a rate of time discount close to zero, b ⇡ 1,
and show our main results remain valid as long as the elasticity of intertemporal substitution is greater or
equal to one (1/r � 1).
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orthogonal.6

With r = 1, the SDF in equation (6) becomes

pt,t+1

= log b � (ct+1

� ct) + (1 � g)

✓
˜vt+1

� Et ˜vt+1

� 1

2

(1 � g) vart ˜vt+1

◆

| {z }
shock to utility ˜vt+1

evaluated with risk aversion g

. (8)

The shocks to the continuation value are priced with immediate risk aversion g, as in
Epstein-Zin. The sole di�erence is that the SDF involves shocks to ˜vt+1

(which evaluates
future uncertainty with risk aversion ˜g) rather than vt+1

(which evaluates future uncer-
tainty with risk aversion g). To understand the pricing implications of horizon-dependent
risk aversion, we first consider how the t + 1 utilities ˜vt+1

and vt+1

di�er.

Lemma 2. Under the Lucas-tree endowment process (7) and r = 1,

˜vt+1

� vt+1

=
1

2

b (g � ˜g)
⇣

a2

c + f2

va2

x + yv( ˜g)2 a2

s

⌘
s2

t+1

, (9)

where fv = bfc
1�bnx

, independent of both g and

˜g.

yv( ˜g) < 0 is implicitly defined by

yv( ˜g) =
1

2

b (1 � ˜g)
1 � bns

⇣
a2

c + f2

va2

x + yv( ˜g)2 a2

s

⌘
,

and is independent of g.

7

Equation (9) reflects that the t + 1 value of self t ( ˜Vt+1

) and that of self t + 1 (Vt+1

) only
di�er in their t+ 1 valuation of uncertain consumption starting in t+ 2, which is governed
by volatility s2

t+1

. Self t evaluates this uncertainty with low risk aversion ˜g while self t + 1

evaluates it with high risk aversion g; ˜vt+1

� vt+1

is therefore positive and increasing in
g � ˜g, and in the amount of uncertainty driven by current volatility s2

t+1

. We obtain the
following central result:

Proposition 3. If volatility is constant, st = s 8t in the consumption process (7), horizon depen-

dent risk aversion does not a�ect equilibrium risk prices.

Under constant volatility, the agent can fully anticipate how her future self will re-
optimize, and her time inconsistency does not cause any additional uncertainty in her

6These assumptions are not crucial to our results and can be generalized. We employ them here to make
our results comparable to those of Bansal and Yaron (2004) and Bansal et al. (2009).

7As in Hansen and Scheinkman (2009), only one solution of the second order equation, which determines
our choice for yv, results in a stationary distribution for ˜v.
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one-period ahead decision making. Only unanticipated changes in her intra-temporal de-
cisions, when the quantity of risk varies through time, get priced in the risky assets’ ex-
cess returns. This result crucially hinges on the fact that, in our preference framework, only
intra-temporal decisions are time inconsistent: intertemporal decisions are unchanged from
the standard model.

If st = s, i.e., volatility is constant at all times, ˜Vt+1

and Vt+1

only di�er by a constant
wedge (equation (9)), and any shock impacts ˜Vt+1

and Vt+1

one-for-one. The di�erence
between the two turns inconsequential for the stochastic discount factor of equation (10)
which becomes

Pt,t+1

= b

✓
Ct+1

Ct

◆�r
0

@
˜Vt+1

Et
⇥

˜V1�g
t+1

⇤ 1

1�g

1

A
r�g

= b

✓
Ct+1

Ct

◆�r
0

@ Vt+1

Et
⇥
V1�g

t+1

⇤ 1

1�g

1

A
r�g

,

una�ected by the dynamic time inconsistency of horizon-dependent risk aversion. The
result of Proposition 3 can be extended to any endowment process, e.g. jumps or regime
switches, where uncertainty is constant through time such that unexpected shocks a�ect
V and ˜V identically. Self t and self t + 1 disagree only about the risk aversion applied to
future uncertainty and not about consumption in t + 1 or any deterministic part of future
consumption. The result of Proposition 3 is also not specific to the knife-edge case of a unit
elasticity of intertemporal substitution, r = 1, as we show in Appendix D.

Quantitatively, Proposition 3 implies that, when risk in the economy is constant, risk
prices are entirely determined by the calibration of the immediate risk aversion, g, and
the elasticity of intertemporal substitution, 1/r, whereas the timing premium is greatly
dependent on the wedge between the immediate and “long-term” risk aversions (see equa-
tion (5)). This striking result formally proves horizon-dependent risk aversion can solve the
“excessive preference for early resolutions of uncertainty puzzle” of Epstein et al. (2014),
without compromising on the model’s ability to match the usual asset pricing moments.

We decompose the shocks to ˜vt+1

into the components due to the three processes in
(7).

Lemma 3. Under the Lucas-tree endowment process (7) and r = 1,

˜vt+1

� Et ˜vt+1

= ct+1

� Etct+1

+ fv (xt+1

� Etxt+1

) + yv( ˜g)
⇣

s2

t+1

� Ets
2

t+1

⌘
.

Positive shocks to immediate consumption, ct+1

� Etct+1

, or to expected consumption
growth, xt+1

� Etxt+1

, naturally increase the value of the consumption stream starting at
t + 1, ˜vt+1

(fv > 0). Increases in uncertainty, s2

t+1

� Ets2

t+1

, on the other hand, reduce
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˜vt+1

( yv( ˜g) < 0). Both immediate consumption shocks and shocks to the drift, captured
by the coe�cient fv, are una�ected by horizon-dependent risk aversion. These shocks
a�ect intertemporal consumption smoothing decisions only, and, as such, their valuation
is governed by the elasticity of intertemporal substitution and not by risk aversion, nor
the dynamic risk inconsistency of our model. Long-run risk aversion ˜g only matters for
shocks to volatility, as indicated by Proposition 3.

From Lemma 3 we obtain the SDF as follows.

Proposition 4. Under the Lucas-tree endowment process (7), and r = 1, the stochastic discount

factor satisfies

pt,t+1

= ¯pt � gacstWc,t+1

+ (1 � g) fvaxstWx,t+1

+ (1 � g)yv( ˜g) asstWs,t+1

, (10)

where

¯pt = Et[pt,t+1

].

The risk free rate is independent of

˜g:

r f ,t = � log b + µc + fcxt +

✓
1

2

� g

◆
a2

c s2

t (11)

The pricing of the immediate consumption shocks, given by the term gacstWc,t+1

in
equation (10), depends only on short-term risk aversion g. It is unchanged from the stan-
dard Epstein-Zin model (and from the expected utility model with CRRA preferences).

The pricing of drift shocks, the term (1 � g) fvaxstWx,t+1

in equation (10), as well as
the risk-free rate (equation (11)) also depends only on immediate risk aversion g. In line
with the results of Lemma 3, these assets hinge on one-period intertemporal decisions
only, and are therefore una�ected by the intra-temporal dynamic inconsistency of horizon-
dependent risk aversion.

Our model yields a negative price for volatility shocks, the term (1 � g)yv( ˜g) asstWs,t+1

in equation (10), consistent with the existing long-run risk literature and the observed data
for one-period returns (see Dew-Becker et al., 2016, and Andries et al., 2016 for recent ex-
amples). Volatility shocks pricing depends on both the immediate risk aversion g, and on
the “long-term” one through yv( ˜g). Any novel pricing e�ects we obtain—both in levels
and in the term structure—derive only from the time varying volatility risk channel, and
the pricing of its shocks. The combined results of Propositions 3 and 4 make clear the
subtlety in the link between risk-aversion and risk premia in the term structure. It is nei-
ther one-for-one, as seems most intuitive at first, nor non-existent, as the one-period-ahead
pricing framework may suggest—unless risk is constant in the economy.
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We analyze next if the model can, as successfully as for the valuations of early versus
late resolutions of risk (Corollary 1), match the observed evidence on the term structure
of risk premia, when risk varies through time.

5.2 Term structure of returns

We turn to the variations in risk prices across the term structure. We focus our analysis
on three specific assets: risk-free bonds, dividend strip futures and variance swaps. This
allows us to compare our calibrated term structure results to the empirical evidence from
van Binsbergen and Koijen (2016) for the bond and dividend strips futures markets; and
Dew-Becker et al. (2016) and Andries et al. (2016) for the variance swaps and options mar-
kets, respectively.

Risk-free bonds We write Bt,h the price of a risk-free zero-coupon bond with maturity h
at time t.

Lemma 4. The price of a risk-free zero-coupon bond with maturity h at time t is

Bt,h = exp

⇣
µb,h + fb,hxt + yb,hs2

t

⌘
,

where fb,h = �fc
1�nh

x
1�nx

does not depend on g or

˜g, but both yb,h and µb,h do. For all h � 0, fb,h < 0

and strictly decreasing with the horizon h. For

˜g > 1, and for all h � 0, yb,h > 0 and strictly

increasing with the horizon h. µb,h is not monotone in h.

8

This result is reminiscent of and consistent with that of Lemma 2. Higher expected
consumption growth reduces the incentive to save, and thus bond prices (fb,h < 0), the
more so the longer the savings horizon. Higher volatility increases precautionary savings
motives, and thus bond prices (yb,h > 0). As the quantity of risk increases with the horizon
in the long-run risk setting of process (7), so does the precautionary savings motive and
thus yb,h. Horizon-dependent risk aversion, and its lower risk aversion in the long-run,
mitigates this e�ect (as we show below in the calibration of our model), but only partially,
as per Lemma 4.

Dividend strip futures In line with the long-run risk literature (Bansal and Yaron, 2004;
Bansal et al., 2009), and consistent with the consumption growth process (7), we assume

8If log b � µc > 0, µb,h is increasing in h. This condition is not satisfied under the calibration of Section 6.
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dividends follow a lognormal growth given by:

dt+1

� dt = µd + fdxt + cacstWc,t+1

+ adstWd,t+1

, (12)

where Wd,t+1

is orthogonal to the consumption shocks Wc,t+1

, Wx,t+1

and Ws,t+1

. fd cap-
tures the link between mean consumption growth and mean dividend growth; c the cor-
relation between immediate consumption and dividend shocks in the business cycle.

We denote the value at time t for a dividend strip with horizon h, i.e. the claim to the
aggregate dividend at horizon t + h, as Dt,h. In the spirit of van Binsbergen and Koijen
(2016) and in order to compare our calibrated results with their empirical ones, we study
one-period holding returns on dividend strip futures, Dt+1,h�1

/Dt,h
Bt+1,h�1

/Bt,h
� 1 .

Lemma 5. The price of a dividend strip with maturity h at time t is

Dt,h

Dt
= exp

⇣
µd,h + fd,hxt + yd,hs2

t

⌘
,

where fd,h = (�fc + fd)
1�nh

x
1�nx

does not depend on g or

˜g, but both yd,h and µd,h do. If fd > fc

(fd < fc), then fb,h > 0 (fb,h < 0) and strictly increasing (decreasing) with the horizon h. µd,h

and yd,h are not monotone in h.

This result is, once again, consistent with that of Lemma 2: horizon-dependent risk
aversion a�ects the pricing of volatility (through yd,h), and the average discount for risk
(through yd,h and µd,h).

Lemma 6. Conditional Sharpe ratios of one-period holding returns on futures are approximately

proportional to the time-varying volatility s2

t : the slope of the term structure at any horizon in-

creases in absolute value with volatility.

9

Van Binsbergen et al. (2013) find, for the dividend strips futures market, a steeper
downward sloping term structure in times of high volatility. As per Lemma 6, such dy-
namics naturally obtain when the term structure of unconditional Sharpe ratios of divi-
dend strip futures is downward sloping, as in the calibration of Section 6.

Variance swaps At any time t, the payo� of a variance swap with horizon h is approx-
imately proportional to the future variance s2

t+h (see Appendix C for details), with the
following pricing result:

9First-order approximation in a2

c s2

t ⇠ a2

xs2

t ⇠ a2

ss2

t ⌧ 1.
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Table 1: Calibration.

(a) Parameters.

Process Parameters

ct µc = 0.15%

fc = 1

ac = 1

xt nx = 0.92

ax = 0.11

st ns = 0.992

s = 0.72%

as = 0.04%

dt µd = 0.15%

fd = 4

ad = 5.96

c = 2.6

(b) Results.

Data Calibration

E [dcons] 0.02 0.02
s [dcons] 0.03 0.03
AC

1

[dcons] 0.29 0.23
AC

2

[dcons] 0.03 0.07
AC

3

[dcons] �0.17 0.02
AC

4

[dcons] �0.22 �0.02

AC
5

[dcons] 0.03 0.01

E [ddiv] 0.01 0.02
s [ddiv] 0.11 0.18
AC

1

[ddiv] 0.18 0.13

r (ddiv, dcons) 0.52 0.57

Lemma 7. The price at time t of an asset with payo� s2

t+h at horizon h � 0 is given by

St,h =
⇣

µs2

,hs2 + ys2

,hs2

t

⌘
Bt,h,

where both µs2

,h and ys2

,h depend on immediate risk aversion g and “long-run” risk aversion

˜g,

for h � 1. µs2

,h � 0 and strictly increasing with the horizon h. ys2

,h � 0 and not monotone in

h.

10 Bt,h is the price of a bond with maturity h as above.

11

The pricing results of Lemma 4, 5 and 7 show horizon-dependent risk aversion a�ects
the pricing of all assets of interest, in levels and term structures, when volatility is time
varying. We assess the magnitude of this e�ect in the calibration that follows.

6 Quantitative results

We calibrate the consumption and dividend growth processes (7) and (12) to fit moments
in the data as closely as possible, within the constraints of our framework (Tables 1a and
1b, data source from Shiller’s website, annual data 1926–2009). Note that fitting both the

10If |yv( ˜g)| > 1�ns
a2

s(g�1)
, ys2

,h is increasing in h. This condition is not satisfied under the calibration of
Section 6.

11Initial conditions are µs2

,0

= 0, ys2

,0

= 1.
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Figure 1: E�ect of horizon dependent risk aversion (HDRA) on willingness to pay for early
resolution of uncertainty (timing premium), compared to Epstein-Zin preferences (EZ) with
g = 10.

strongly positive autocorrelation for consumption growth at the one-year frequency and
the strongly negative one at the four-year frequency is di�cult when the time varying
drift follows an AR(1) process (see Bryzgalova and Julliard, 2015, for a recent analysis
of consumption growth in the data). Our calibration for the dividend and volatility pro-
cesses is very similar to Bansal et al. (2014).12 This choice, instead of a GMM approach
incorporating term structure moments which could improve the fit of Figures 2, 3 and 4,
allows us to highlight how our preference model—rather than changes in the calibration
for the endowment process—a�ect prices. In line with the literature, we use b = 0.999 for
the monthly rate of time discount, and the elasticity of intertemporal substitution is one
throughout (see Appendix D for r 6= 1 approximations results).

6.1 Timing premium

We first study the quantitative implications of horizon-dependent risk aversion on the
timing premium—the agent’s willingness to pay for early resolution of all consumption
uncertainty. Figure 1 plots the timing premium for both horizon-dependent risk aversion
and for standard Epstein-Zin preferences when g = 10, using the calibration of Table 1a.13

As pointed out by Epstein et al. (2014), a standard Epstein-Zin agent has a high willing-
12We assume a higher volatility and lower persistence for the consumption drift process, closer to direct

evidence in the data (Hansen et al., 2008).
13In Section 4, we analyze the term-premium under the constant volatility process (4), as in Epstein et al.

(2014). We formally derive the term-premium under the stochastic volatility process (7) in Appendix C.
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Table 2: Equity premium versus timing premium.

Equity
premium

Timing
premium

Data 6.64% –

Calibration ˜g ⇡ 1 6.20% -31%
˜g = 2 6.23% -24%
˜g = 3 6.27% -15%
˜g = 5 6.35% 0%
˜g = 7 6.45% 14%
˜g = g = 10 6.65% 35%

Annualized returns under g = 10, r = 1; calibration of Table 1a;
data is from Bob Shiller’s website.

ness to pay for early resolution—about 35% of expected consumption. In contrast, under
our calibration, an agent with horizon-dependent risk aversion can have a significantly
lower willingness to pay for early resolution. In fact, for delayed risk aversion ˜g < 5, the
agent with horizon-dependent risk aversion has a preference for late resolution of risk.

This result is of particular interest for two reasons. First, as briefly discussed in Section
4, apart from the fact that a 35% premium seems unrealistically large, there is no clear con-
sensus concerning the “right” value for the timing premium: how large it should be, or
whether it should even be positive. With horizon-dependent risk aversion, and the calibra-
tion of Table 1a, the possible values for the timing premia range from �30% to +35%: our
framework can accommodate any “reasonable” value for the valuation of early versus late
resolutions of uncertainty. Second, and crucially, the average risk free rate and equity pre-
mium are mostly determined by the calibration for immediate risk aversion g (and r = 1),
with ˜g playing a limited role (or no role whatsoever for the risk-free rate). These results
are presented in Table 2: calibrating the usual asset pricing moments no longer precludes
a reasonable timing premium.

6.2 Term structures

We now turn to the pricing of risk in the term structure. We present results for ˜g ⇡ 1,
under which horizon-dependent risk aversion is the most impactful. Results with higher
˜g are provided in Appendix E, and show that, as long as ˜g remains relatively low (less than
˜g = 5) our model remains quantitatively distinguishable from the standard Epstein-Zin
model.

Figure 2 shows the term structure of one-month holding returns on risk-free bonds.
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Figure 2: Calibrated term structure of risk-free bond returns under horizon-dependent risk
aversion (HDRA). The Epstein-Zin curve (EZ) is done with the calibration of Bansal et al. (2014).

Because our model assumes a low risk aversion for delayed risk, the motive for long-term
precautionary savings is lower than in the standard model, and we obtain a higher equi-
librium risk-free rate at the back-end of the curve. Van Binsbergen and Koijen (2016) find,
using CRSP Treasury bond portfolios (from 1952 to 2013), real returns of 0.6% at 1 year,
1.3% at 3 years and 1.8% at 10 years. Even though horizon-dependent risk aversion does
not deliver an upward sloping yield curve (see the discussion of Lemma 4), our model
modifies the standard Epstein-Zin model in an empirically useful direction.

Figure 3 plots the term structure for the Sharpe ratios of one-month holding returns
on dividend strip futures. Our model, in which the term structure is upward sloping for
the first 5 years, and downward sloping thereafter, does well with regards to the empirical
evidence of van Binsbergen and Koijen (2016). They find, on the US SPX (from 2002 to
2014), Sharpe ratios of 0.12 at 1 year, 0.14 at 3 years and 0.16 at 5 years, but 0.04 for the index,
indicating a sharply decreasing term structure for the medium to long-term, a puzzle for
the standard Epstein-Zin model.

Finally, Figure 4 plots the term structure for Sharpe ratios of one-month holding returns
on variance swaps. Our calibration with horizon-dependent risk aversion results in an
upward sloping term structure, equivalent to a downward sloping price of volatility risk,
in absolute value. This result is in line with the recent evidence from Dew-Becker et al.
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Figure 3: Calibrated term structure of Sharpe ratios under horizon-dependent risk aversion
(HDRA). The Epstein-Zin curve (EZ) is done with the calibration of Bansal et al. (2014).
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Figure 4: Calibrated term structure of variance swaps returns Sharpe ratios under horizon-
dependent risk aversion (HDRA). The Epstein-Zin curve (EZ) is done with the calibration of
Bansal et al. (2014).
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(2016), using US variance swaps data, and Andries et al. (2016), on US option straddles
data. Expected returns are positive in our calibrated model, in line with Dew-Becker et al.
(2016), who find positive values beyond the 3-months horizon. However, Dew-Becker et al.
(2016) find strong negative values for the first month horizon, followed by a sharp increase.
Andries et al. (2016) show a similar, though attenuated, pattern. These results indicate
the presence, and pricing, of immediate, transitory, shocks, which the consumption and
dividend growth processes (7) and (12) do not account for. Introducing such shocks into
our framework is left for future research.

7 Conclusion

The “long-run risk” model of Bansal and Yaron (2004) has recently been criticized because
it makes qualitatively counterfactual predictions about the term structure of risk prices
(e.g., van Binsbergen et al., 2012, 2013; van Binsbergen and Koijen, 2016) and because its
calibrations are di�cult to reconcile with the microeconomic foundations of the prefer-
ences it employs (Epstein et al., 2014). We show that these criticisms do not imply that the
model needs to be discarded. Instead, relaxing the restriction of Epstein and Zin (1989)
that risk preferences be constant across horizons allows researchers to retain the desir-
able pricing properties of the long-run risk model, and simultaneously match the sign of
the term structure of risk prices and obtain reasonable implications for the timing of the
resolution of uncertainty.

Our analysis is accomplished with considerable technical di�culty and is not due to
a tautological relationship between risk aversion and risk pricing at di�erent maturities.
In particular, we show how to solve for general equilibrium asset prices in an economy
populated by agents with dynamically inconsistent risk preferences. In such a model, the
price of risk depends on the horizon, but only if volatility is stochastic. This insight leads
to several testable predictions. Some of them, such as a declining term structure of the
price of risk, have found support in the recent empirical literature. Others constitute op-
portunities for future research. We conclude that relaxing the common assumption that
risk preferences are constant across maturities—and specifically, replacing it with the as-
sumption that short-horizon risk aversion is higher than long-horizon risk aversion—is a
useful new tool for future research in asset pricing and macro-finance.

24



References

Abdellaoui, M., E. Diecidue, and A. Onculer (2011). Risk preferences at di�erent time
periods: An experimental investigation. Management Science 57(5), 975–987.

Adrian, T. and J. Rosenberg (2008). Stock returns and volatility: Pricing the short-run and
long-run components of market risk. Journal of Finance 63(6), 2997–3030.

Ai, H., M. M. Croce, A. M. Diercks, and K. Li (2015). News shocks and production-based
term structure of equity returns. Working Paper.

Andries, M. (2015). Consumption-based asset pricing with loss aversion. Toulouse School

of Economics Working Paper.

Andries, M., T. M. Eisenbach, M. C. Schmalz, and Y. Wang (2016). The term structure of
the price of variance risk. Working Paper.

Andries, M. and V. Haddad (2015). Information aversion. Working Paper.

Ang, A., R. J. Hodrick, Y. Xing, and X. Zhang (2006). The cross-section of volatility and
expected returns. Journal of Finance 61(1), 259–299.

Backus, D., N. Boyarchenko, and M. Chernov (2016). Term structure of asset prices and
returns. Working Paper.

Bansal, R., D. Kiku, I. Shaliastovich, and A. Yaron (2014). Volatility, the macroeconomy,
and asset prices. Journal of Finance 69(6), 2471–2511.

Bansal, R., D. Kiku, and A. Yaron (2009). An empirical evaluation of the long-run risks
model for asset prices. Critical Finance Review 1, 183–221.

Bansal, R. and A. Yaron (2004). Risks for the long run: A potential resolution of asset
pricing puzzles. Journal of Finance 59(4), 1481–1509.

Baucells, M. and F. Heukamp (2010). Common ratio using delay. Theory and Decision 68(1-
2), 149–158.

Belo, F., P. Collin-Dufresne, and R. S. Goldstein (2015). Dividend dynamics and the term
structure of dividend strips. Journal of Finance 70(3), 1115–1160.

van Binsbergen, J. H., M. W. Brandt, and R. S. Koijen (2012). On the timing and pricing of
dividends. American Economic Review 102(4), 1596–1618.

25



van Binsbergen, J. H., W. Hueskes, R. Koijen, and E. Vrugt (2013). Equity yields. Journal of

Financial Economics 110(3), 503–519.

van Binsbergen, J. H. and R. S. Koijen (2011). A note on “Dividend strips and the term
structure of equity risk premia: A case study of the limits of arbitrage” by Oliver Boguth,
Murray Carlson, Adlai Fisher and Mikhail Simutin.

van Binsbergen, J. H. and R. S. Koijen (2016). The term structure of returns: Facts and
theory. Journal of Financial Economics (forthcoming).

Boguth, O., M. Carlson, A. J. Fisher, and M. Simutin (2012). Leverage and the limits of
arbitrage pricing: Implications for dividend strips and the term structure of equity risk
premia. Working Paper.

Boguth, O. and L.-A. Kuehn (2013). Consumption volatility risk. Journal of Finance 68(6),
2589–2615.

Bollerslev, T. and V. Todorov (2011). Tails, fears, and risk premia. Journal of Finance 66(6),
2165–2211.

Bonomo, M., R. Garcia, N. Meddahi, and R. Tédongap (2011). Generalized disappointment
aversion, long-run volatility risk, and asset prices. Review of Financial Studies 24(1), 82–
122.

Bryzgalova, S. and C. Julliard (2015). The consumption risk of bonds and stocks. Stanford

University Working Paper.

Campbell, J. Y. and J. H. Cochrane (1999). By force of habit: A consumption-based expla-
nation of aggregate stock market behavior. Journal of Political Economy 107(2), 205–251.

Campbell, J. Y., S. Giglio, C. Polk, and R. Turley (2016). An intertemporal CAPM with
stochastic volatility. Working Paper.

Chabi-Yo, F. (2016). Term structure of the price of volatility: A preference-based explana-
tion. Working Paper.

Coble, K. and J. Lusk (2010). At the nexus of risk and time preferences: An experimental
investigation. Journal of Risk and Uncertainty 41, 67–79.

Cochrane, J. (2016). Macro-finance. Working Paper.

26



Constantinides, G. M. (1990). Habit formation: A resolution of the equity premium puzzle.
Journal of Political Economy 98(3), 519–543.

Croce, M. M., M. Lettau, and S. C. Ludvigson (2015). Investor information, long-run risk,
and the term structure of equity. Review of Financial Studies 28(3).

Curatola, G. (2015). Loss aversion, habit formation and the term structures of equity and
interest rates. Journal of Economic Dynamics and Control 53, 103–122.

Dew-Becker, I., S. Giglio, A. Le, and M. Rodriguez (2016). The price of variance risk. Journal

of Financial Economics (forthcoming).

Eisenbach, T. M. and M. C. Schmalz (2016). Anxiety in the face of risk. Journal of Financial

Economics 121(2), 414–426.

Epstein, L. G., E. Farhi, and T. Strzalecki (2014). How much would you pay to resolve
long-run risk? American Economic Review 104(9), 2680–2697.

Epstein, L. G. and S. E. Zin (1989). Substitution, risk aversion, and the temporal behavior
of consumption and asset returns: A theoretical framework. Econometrica 57(4), 937–969.

Favilukis, J. and X. Lin (2015). Wage rigidity: A quantitative solution to several asset pric-
ing puzzles. Review of Financial Studies (forthcoming).

Gabaix, X. (2012). Variable rare disasters: An exactly solved framework for ten puzzles in
macro-finance. Quarterly Journal of Economics 127(2), 645–700.

Gârleanu, N., L. Kogan, and S. Panageas (2012). Displacement risk and asset returns. Jour-

nal of Financial Economics 105(3), 491–510.

Giglio, S., M. Maggiori, and J. Stroebel (2014). Very long-run discount rates. Quarterly

Journal of Economics (forthcoming).

Giglio, S., M. Maggiori, J. Stroebel, and A. Weber (2015). Climate change and long-run
discount rates: Evidence from real estate. Working Paper.

Gollier, C. (2013). Pricing the planet’s future: the economics of discounting in an uncertain world.
Princeton University Press.

Golman, R., D. Hagmann, and G. Loewenstein (2016). Information avoidance. Journal of

Economic Literature (forthcoming).

27



Gul, F. (1991). A theory of disappointment aversion. Econometrica 59(3), 667–686.

Guo, R. (2015). Time-inconsistent risk preferences and the term structure of dividend
strips. Working Paper.

Hansen, L. P., J. C. Heaton, and N. Li (2008). Consumption strikes back? Measuring long
run risk. Journal of Political Economy 116, 260–302.

Hansen, L. P. and J. A. Scheinkman (2009). Long-term risk: An operator approach. Econo-

metrica 77(1), 177–234.

Harris, C. and D. Laibson (2001). Dynamic choices of hyperbolic consumers. Economet-

rica 69(4), 935–957.

Jones, E. E. and C. A. Johnson (1973). Delay of consequences and the riskiness of decisions.
Journal of Personality 41(4), 613–637.

Khapko, M. (2015). Asset pricing with dynamically inconsistent agents. Working Paper.

Kogan, L. and D. Papanikolaou (2010). Growth opportunities and technology shocks.
American Economic Review, 532–536.

Kogan, L. and D. Papanikolaou (2014). Growth opportunities, technology shocks, and
asset prices. Journal of Finance 69(2), 675–718.

Kreps, D. M. and E. L. Porteus (1978). Temporal resolution of uncertainty and dynamic
choice theory. Econometrica 46(1), 185–200.

Laibson, D. (1997). Golden eggs and hyperbolic discounting. Quarterly Journal of Eco-

nomics 112(2), 443–477.

Lustig, H., A. Stathopoulos, and A. Verdelhan (2016). Nominal exchange rate stationarity
and long-term bond returns. Working Paper.

Luttmer, E. G. J. and T. Mariotti (2003). Subjective discounting in an exchange economy.
Journal of Political Economy 111(5), 959–989.

Marfe, R. (2015). Labor rigidity and the dynamics of the value premium. Working Paper.

Menkho�, L., L. Sarno, M. Schmeling, and A. Schrimpf (2012). Carry trades and global
foreign exchange volatility. Journal of Finance 67(2), 681–718.

28



Muir, T. (2016). Financial crises and risk premia. Quarterly Journal of Economics (forthcom-
ing).

Noussair, C. and P. Wu (2006). Risk tolerance in the present and the future: An experimen-
tal study. Managerial and Decision Economics 27(6), 401–412.

Onculer, A. (2000). Intertemporal choice under uncertainty: A behavioral perspective.
Working Paper.

Phelps, E. S. and R. A. Pollak (1968). On second-best national saving and game-equilibrium
growth. Review of Economic Studies 35(2), 185–199.

Routledge, B. R. and S. E. Zin (2010). Generalized disappointment aversion and asset
prices. The Journal of Finance 65(4), 1303–1332.

Sagristano, M. D., Y. Trope, and N. Liberman (2002). Time-dependent gambling: Odds
now, money later. Journal of Experimental Psychology: General 131(3), 364–376.

Schreindorfer, D. (2014). Tails, fears, and equilibrium option prices. Available at SSRN

2358157.

Strotz, R. H. (1955). Myopia and inconsistency in dynamic utility maximization. Review of

Economic Studies 23(3), 165–180.

Wachter, J. A. (2013). Can time-varying risk of rare disasters explain aggregate stock mar-
ket volatility? The Journal of Finance 68(3), 987–1035.

Weber, M. (2016). Cash flow duration and the term structure of equity returns. Working
Paper.

Zhang, L. (2005). The value premium. Journal of Finance 60(1), 67–103.

29



Appendix (for online publication)

A General sequence of risk aversions

Let {gh}h�1

be a decreasing sequence representing risk aversion at horizon h. In period t,
the agent evaluates a consumption stream starting in period t + h by

Vt,t+h =

 

(1 � b)C1�r
t+h + bEt+h

h
V1�gh+1

t,t+h+1

i 1�r
1�gh+1

! 1

1�r

for all h � 0. (13)

The agent’s utility in period t is given by setting h = 0 in (13) which we denote by Vt ⌘ Vt,t

for all t:

Vt =

 

(1 � b)C1�r
t + bEt

h
V1�g

1

t,t+1

i 1�r
1�g

1

! 1

1�r

As in the Epstein-Zin model, utility Vt depends on deterministic current consumption Ct

and a certainty equivalent Et

h
V1�g

1

t,t+1

i 1

1�g
1 of uncertain continuation values Vt,t+1

, where
the aggregation of the two periods occurs with constant elasticity of intertemporal substi-
tution given by 1/r, regardless of the horizon h. However, in contrast to the Epstein-Zin
model, the certainty equivalent of consumption starting at t + 1 is calculated with relative
risk aversion g

1

, wherein the certainty equivalent of consumption starting at t + 2 is cal-
culated with relative risk aversion g

2

, and so on. This is the concept of horizon-dependent
risk aversion applied to the nested valuation of certainty equivalents, as in the Epstein-Zin
model, but with relative risk aversion gh for the certainty equivalent formed at horizon h.
Our model therefore nests the Epstein-Zin model if we set gh = g for all h, which, in turn,
nests the standard time-separable model for g = r.

An interesting question is the possibility to axiomatize the horizon-dependent risk
aversion preferences we propose. Our dynamic model builds on the functional form of
Epstein and Zin (1989) which captures non-time-separable preferences of the form ax-
iomatized by Kreps and Porteus (1978). However, our generalization of Epstein and Zin
(1989) explicitly violates Axiom 3.1 (temporal consistency) of Kreps and Porteus (1978)
which is necessary for the recursive structure. In contrast to Epstein-Zin, the preference
of our model captured by Vt ⌘ Vt,t is not recursive since Vt+1

⌘ Vt+1,t+1

does not recur in
the definition of Vt.

In order to derive the closed-form solution for Vt ⌘ Vt,t, we assume that risk aversion is
decreasing until some horizon H and constant thereafter, gh > gh+1

for h < H and gh = ˜g
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for h � H. Starting with Vt,t+H, our model then corresponds to the standard Epstein-Zin
recursion with risk aversion ˜g for which we can use the standard solution. Determining
Vt then is just a matter of solving backwards.

B Stochastic discount factor

We present the derivation of the stochastic discount factor with a general sequence of risk
aversions {gh}h�1

. The equations simplify to the ones in the main text by setting g
1

= g

and gh = ˜g for h � 2.

Proof of Proposition 2. This appendix derives the stochastic discount factor of our dy-
namic model using an approach similar to the one used by Luttmer and Mariotti (2003)
for dynamic inconsistency due to non-geometric discounting. In every period t the agent
chooses consumption Ct for the current period and state-contingent levels of wealth {Wt+1,s}
for the next period to maximize current utility Vt subject to a budget constraint and antic-
ipating optimal choice C⇤

t+h in all following periods (h � 1):

max

Ct,{Wt+1

}

 

(1 � b)C1�r
t + bEt

h�
V⇤

t,t+1

�
1�g

1

i 1�r
1�g

1

! 1

1�r

s.t. PtCt + Et[Pt+1

Wt+1

]  PtWt

V⇤
t,t+h =

 

(1 � b)
�
C⇤

t+h
�

1�r
+ bEt+h

h�
V⇤

t,t+h+1

�
1�gh+1

i 1�r
1�gh+1

! 1

1�r

for all h � 1.

Denoting by lt the Lagrange multiplier on the budget constraint for the period-t problem,
the first order conditions are:14

• For Ct:  

(1 � b)C1�r
t + bEt

h
V1�g

1

t,t+1

i 1�r
1�g

1

! 1

1�r�1

(1 � b)C�r
t = lt.

14For notational ease we drop the star from all Cs and Vs in the following optimality conditions but it
should be kept in mind that all consumption values are the ones optimally chosen by the corresponding
self.
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• For each Wt+1,s:

1

1 � r

 

(1 � b)C1�r
t + bEt

h
V1�g

1

t,t+1

i 1�r
1�g

1

! 1

1�r�1

b
d

dWt+1,s
bEt

h
V1�g

1

t,t+1

i 1�r
1�g

1

= Pr[t + 1, s]
Pt+1,s

Pt
lt.

Combining the two, we get an initial equation for the SDF:

Pt+1,s

Pt
= b

1

1�r
1

Pr[t+1,s]
d

dWt+1,s
Et

h
V1�g

1

t,t+1

i 1�r
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1

1

1

(1 � b)C�r
t

. (14)

The agent in state s at t + 1 maximizes

 

(1 � b)C1�r
t+1,s + bEt+1,s

h�
V⇤

t+1,s,t+2

�
1�g

1

i 1�r
1�g

1

! 1

1�r

and has the analogous first order condition for Ct+1,s:

 

(1 � b)C1�r
t+1,s + bEt+1,s

h
V1�g

1

t+1,s,t+2

i 1�r
1�g

1

! 1

1�r�1

(1 � b)C�r
t+1,s = lt+1,s.

The Lagrange multiplier lt+1,s is equal to the marginal utility of an extra unit of wealth in
state t + 1, s:

lt+1,s =
1

1 � r

 

(1 � b)C1�r
t+1,s + bEt+1,s

h
V1�g

1
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!
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Eliminating the Lagrange multiplier lt+1,s and combining with the initial equation (14)
for the SDF, we get:

Pt+1,s

Pt
= b
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.
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Expanding the V expressions, we can proceed with the di�erentiation in the numerator:

Pt+1,s

Pt
= Et

2

4
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. (15)

For Markov consumption C = fW, we can divide by Ct+1,s and solve both di�erentiations:

• For the numerator:
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• For the denominator:
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Substituting these into equation (15) and canceling we get:
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Simplifying and cleaning up notation, we arrive at

Pt,t+1

= b
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,

as stated in the text. ⇤
To derive the two-period ahead stochastic discount factor, we use the intertemporal

marginal rate of substitution:
Pt,t+2

=
dVt/dWt+2

dVt/dCt
.

While the marginal utility of current consumption, dVt/dCt, is unchanged from the stan-
dard model,

dVt

dCt
= Vr

t (1 � b)C�r
t ,

the marginal utility of wealth two periods away is di�erent:

dVt

dWt+2

=
dVt

dVt,t+2

⇥ dVt,t+2

dWt+2

.

In particular, we cannot appeal to the envelope condition at t + 1 to replace the term
dVt,t+2

/dWt+2

by dVt,t+2

/dCt+1

because Vt,t+2

is the value self t attaches to future con-
sumption while the envelope condition at t + 2 is in terms of Vt+2

, the objective function
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of self t + 2:
dVt+2

dWt+2

=
dVt+2

dCt+2

= Vr
t+2

(1 � b)C�r
t+2

.

However, due to the homotheticity of our preferences, we can rely on the fact that both
Vt,t+2

and Vt+2

are homogeneous of degree one which implies that
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.

This allows us to derive the two-period SDF Pt,t+2

and compare it two the sequence of
one-period SDFs Pt,t+1
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:

Pt,t+2

= b2

✓
Ct+2

Ct

◆�r

0

BB@
Vt,t+1

Et

h
V1�g

1

t,t+1

i 1

1�g
1

1

CCA

r�g
1

⇥

0

BB@
Vt,t+2

Et+1

h
V1�g

2

t,t+2

i 1

1�g
2

1

CCA

r�g
2

✓
Vt,t+2

Vt+2

◆
1�r

Pt,t+1

Pt+1,t+2

= b2

✓
Ct+2

Ct

◆�r

0

BB@
Vt,t+1

Et

h
V1�g

1

t,t+1

i 1

1�g
1

1

CCA

r�g
1

⇥

0

BB@
Vt+1,t+2

Et+1

h
V1�g

1

t+1,t+2

i 1

1�g
1

1

CCA

r�g
1

✓
Vt,t+1

Vt+1

◆
1�r ✓Vt+1,t+2

Vt+2

◆
1�r

.

C Exact solutions for r = 1

This appendix presents the exact solutions derived for unit elasticity of intertemporal sub-
stitution, 1/r = 1, and log-normal uncertainty. Denoting logs by lowercase letters, our
general model (13) becomes

vt = (1 � b) ct + b

✓
Et[vt,t+1

] +
1

2

(1 � g
1

) vart(vt,t+1

)

◆
, (16)
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with the continuation value vt,t+1

satisfying the recursion

vt,t+h = (1 � b) ct+h + b

✓
Et+1

[vt,t+h+1

] +
1

2

(1 � gh+1

) vart+1

(vt,t+h+1

)

◆
.

C.1 Valuation of risk and temporal resolution

Proof of Lemma 1. Starting at horizon t + 1, equation (16) corresponds to the standard
recursion

˜vt+1

= (1 � b) ct+1

+
b

1 � ˜g
log(Et+1

[exp ((1 � ˜g) ˜vt+2

)]) .

If consumption follows process (4), guess and verify that the solution to the recursion
satisfies

˜vt � ct = ˜µv + ˜fvxt.

Substituting in and matching coe�cients yields

˜vt � ct =
b

1 � b
µc +

bfc

1 � bnx
xt +

1

2

b (1 � ˜g)
1 � b

 
a2

c +

✓
bfc

1 � bnx

◆
2

a2

x

!
s2

.

From the perspective of period t,

vt = (1 � b) ct +
b

1 � g
log(Et[exp ((1 � g) ˜vt+1

)])

and

vt � ct =
b

1 � b
µc +

bfc

1 � bnx
xt +

1

2

b

1 � b

 
a2

c +

✓
bfc

1 � bnx

◆
2

a2

x

!
s2 ((1 � g) + b (g � ˜g)) ,

as stated in the text. ⇤

Proof of Proposition 1. If all risk is resolved at t + 1, log continuation utility v⇤t,t+1

is
given by

v⇤t+1

= (1 � b) ct+1

+ b
⇣
(1 � b) ct+2

+ b
�
(1 � b) ct+3

+ · · ·
�⌘

= ct+1

+
•

Â
h=1

bh (ct+h+1

� ct+h) .
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From the perspective of period t, this continuation utility is normally distributed with
mean and variance given by

E[v⇤t+1

] = ct +
1

1 � b
µ +

fc

1 � bnx
xt,

var(v⇤t+1

) =
1

1 � b2

s2

 
a2

c +

✓
bfc

1 � bnx

◆
2

a2

x

!
.

Using these expressions, we can derive the early resolution utility at t as

v⇤t � ct =
b

1 � b
µc +

bfc

1 � bnx
xt +

1

2

b (1 � g)
1 � b2

 
a2

c +

✓
bfc

1 � bnx

◆
2

a2

x

!
s2

.

Subtracting this from the utility vt under gradual resolution, we arrive at a timing pre-
mium given by

TP = 1 � exp

 
1

2

b2 (1 � g)
1 � b

 
a2

c +

✓
bfc

1 � bnx

◆
2

a2

x

!
s2

✓
g � ˜g

1 � g
+

1

1 + b

◆!
,

as stated in the text. ⇤

Case with stochastic volatility: If consumption follows process (7) with stochastic volatil-
ity, guess and verify that the solution to the recursion for ˜vt satisfies

˜vt � ct = ˜µv + fvxt + ˜yvs2

t

where

˜µv =
b

1 � b

⇣
µc + ˜yvs2 (1 � ns)

⌘

fv =
bfc

1 � bnx

˜yv =
1

2

b (1 � ˜g)
1 � bns

⇣
a2

c + f2

va2

x + ( ˜yv)
2 a2

s

⌘
.

We then obtain:

vt � ct = ˜µv + fvxt + ˜yvs2

t

✓
1 � (1 � bns)

g � ˜g

1 � ˜g

◆
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If all risk is resolved at t + 1, log continuation utility v⇤t,t+1

is given by

v⇤t+1

= (1 � b) ct+1

+ b
⇣
(1 � b) ct+2

+ b
�
(1 � b) ct+3

+ · · ·
�⌘

= ct+1

+
•

Â
h=1

bh (ct+h+1

� ct+h) .

From the perspective of period t, this continuation utility is normally distributed with
mean and variance given by

Et[v⇤t+1

] = ct +
1

1 � b
µ +

fc

1 � bnx
xt,

vart(v⇤t+1

) =
1

1 � b2ns

✓
s2

t +
b2

1 � b2

s2 (1 � ns)

◆ 
a2

c +

✓
bfc

1 � bnx

◆
2

a2

x

!
.

Using these expressions, we can derive the early resolution utility at t as

v⇤t � ct =
b

1 � b
µc +

bfc

1 � bnx
xt +

1

2

b (1 � g)
1 � b2ns

 
a2

c +

✓
bfc

1 � bnx

◆
2

a2

x

!✓
s2

t +
b2

1 � b2

s2 (1 � ns)

◆

and

vt � v⇤t =
b

1 � b
˜yvs2 (1 � ns)

✓
1 � 1 � g

1 � ˜g

b

1 + b

1 � bns

1 � b2ns
+

1

2

1 � g

1 � b2ns

b2

1 + b
˜yva2

s

◆

+ ˜yvs2

t

✓
1 � (1 � bns)

(1 � ˜g)

✓
g � ˜g +

b (1 � g)
1 � b2ns

◆
+

1

2

b (1 � g)
1 � b2ns

˜yva2

s

◆
.

C.2 Stochastic discount factor

We now specialize to the case of two levels of risk aversion, setting g
1

= g and gh = ˜g for
h � 2.

Proof of Lemma 2. Under the stochastic process (7), we can guess and verify that

˜vt+1

= ct+1

+
bfc

1 � bnx
xt+1

+
b

1 � b
µc + yv( ˜g)

✓
b

1 � b
s2 (1 � ns) + s2

t+1

◆

where yv( ˜g) < 0 is implicitly defined by

yv( ˜g) =
1 � ˜g

2

b

1 � bns

 
a2

c +
b2f2

c a2

x

(1 � bnx)
2

+ yv( ˜g)2 a2

s

!
.
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We therefore have

Et[ ˜vt+1

] = ct +
1

1 � bnx
fcxt +

1

1 � b
µc + yv( ˜g)

✓
1

1 � b
s2 (1 � ns) + nss2

t

◆
,

vart( ˜vt+1

) =

 
a2

c +
b2f2

c a2

x

(1 � bnx)
2

+ yv( ˜g)2 a2

s

!
s2

t .

Substituting these into (16), we arrive at the solution for vt:

vt = ct +
bfc

1 � bnx
xt +

b

1 � b
µc

+
b

1 � b

 
a2

c +
b2f2

c a2

x

(1 � bnx)
2

+ yv( ˜g)2 a2

s

!

⇥
✓

b
1 � ˜g

2

s2 (1 � ns) + (1 � b) nss2

t
1 � bns

+ (1 � b)
1 � g

2

s2

t

◆
.

Taking the di�erence vt � ˜vt yields the result in the text. ⇤

Proof of Lemma 3. The result follows directly from the expression for ˜vt+1

in the proof
of Lemma 2. ⇤

Proof of Proposition 4. Using the results of Lemmas 2 and (16), the expression for the
SDF follows from equation (8):

pt,t+1

=

¯ptz }| {
log b � µc � fcxt � (1 � g)2

1 � bns

b (1 � ˜g)
yv( ˜g) s2

t

� gacstWc,t+1

+ (1 � g) fvaxstWx,t+1

+ (1 � g)yv( ˜g) asstWs,t+1

,

The risk-free rate is defined as r f ,t = � log Et (Pt,t+1

) and simplifies to

r f ,t = � log b + µc + fcxt +

✓
1

2

� g

◆
a2

c s2

t

as stated in the text. ⇤
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C.3 Term structure of returns

C.3.1 General claims

To make the problem as general as possible, we analyze horizon-dependent claims that
are priced recursively as

Yt,h = Et
⇥
Pt,t+1

Gy,t+1

Yt+1,h�1

⇤
,

that is

yt,h = Et
⇥
pt,t+1

+ gy,t+1

+ yt+1,h�1

⇤
+

1

2

vart
�
pt,t+1

+ gy,t+1

+ yt+1,h�1

�
,

where

gy,t+1

= µy + fyxt + yys2

t

+ ay,cacstWc,t+1

+ ay,xaxstWx,t+1

+ ay,sasstWs,t+1

+ ay,dadstWd,t+1

,

and Yt,0 = 1.
Guess that

Yt,h = exp

⇣
µy,h + fy,hxt + yy,hs2

t

⌘
.

Suppose h � 1, then:

pt,t+1

+ gy,t+1

+ yt+1,h�1

= log b � µc + µy + µy,h�1

+ yy,h�1

(1 � ns) s2

+
�
�fc + fy + fy,h�1

nx
�

xt +

✓
� (1 � g)2

1 � bns

b (1 � ˜g)
yv( ˜g) + yy + yy,h�1

ns

◆
s2

t

+
�
�g + ay,c

�
acstWc,t+1

+
�
(1 � g) fv + ay,x + fy,h�1

�
axstWx,t+1

+
�
(1 � g)yv( ˜g) + ay,s + yy,h�1

�
asstWs,t+1

+ ay,dadstWd,t+1

,
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and therefore

yt,h = log b � µc + µy + µy,h�1

+ yy,h�1

(1 � ns) s2 +
�
�fc + fy + fy,h�1

nx
�

xt

+


� (1 � g)2

1 � bns

b (1 � ˜g)
yv( ˜g) + yy + yy,h�1

ns

+
1

2

⇣�
�g + ay,c

�
2

a2

c +
�
(1 � g) fv + ay,x + fy,h�1

�
2

a2

x

+
�
(1 � g)yv( ˜g) + ay,s + yy,h�1

�
2

a2

s + a2

y,da2

d

⌘�
s2

t .

Matching coe�cients, we find the recursions, for h � 1:

• Constant:

µy,h = log b � µc + µy + µy,h�1

+ yy,h�1

(1 � ns) s2

) µy,h =
�
log b � µc + µy

�
h + (1 � ns) s2

h�1

Â
i=0

yy,i

• Terms in xt:

fy,h = �fc + fy + fy,h�1

nx

) fy,h =
�
�fc + fy

�
1 � nh

x
1 � nx

• Terms in s2

t :

yy,h = � (1 � g)2

1 � bns

b (1 � ˜g)
yv( ˜g) + yy + yy,h�1

ns

+
1

2

⇣�
�g + ay,c

�
2

a2

c +
�
(1 � g) fv + ay,x + fy,h�1

�
2

a2

x

+
�
(1 � g)yv( ˜g) + ay,s + yy,h�1

�
2

a2

s + a2

y,da2

d

⌘
,

which has no simple solution.

Further, we consider one-period holding returns for these claims of the form

1 + RY
t+1,h =

Gy,t+1

Yt+1,h�1

Yt,h
=

Gy,t+1

Yt+1,h�1

Et
⇥
Pt,t+1

Gy,t+1

Yt+1,h�1

⇤

= R f ,t
Et[Pt,t+1

] Gy,t+1

Yt+1,h�1

Et
⇥
Pt,t+1

Gy,t+1

Yt+1,h�1

⇤
,
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with the risk-free rate
R f ,t =

1

Et[Pt,t+1

]
.

The conditional Sharpe Ratio is

SR

Y
t,h =

Et

h
1 + RY

t+1,h

i
� 1

r
vart

⇣
1 + RY

t+1,h

⌘

=
Et

⇣
1 + RY

t+1,h

⌘
� 1

s

Et

✓⇣
1 + RY

t+1,h

⌘
2

◆
�
⇣

Et

⇣
1 + RY

t+1,h

⌘⌘
2

⇡

r f ,t + s2

t

8
<

:
gay,ca2

c � (1 � g) fv
�
ay,x + fy,h�1

�
a2

x

� (1 � g) ˜yv
�
ay,s + yy,h�1

�
a2

s

st

q
a2

y,ca2

c +
�
ay,x + fy,h�1

�
2

a2

x +
�
ay,s + yy,h�1

�
2

a2

s + a2

y,da2

d

.

Futures returns RF,Y
t+1,h for asset Y at time t and horizon h are of the form

RF,Y
t+1,h + 1 =

1 + RY
t+1,h

1 + RB
t+1,h

=
Gy,t+1

Yt+1,h�1

Yt,h

Bt,h

Bt+1,h�1

=
Gy,t+1

Yt+1,h�1

Et
�
Pt,t+1

Gy,t+1

Yt+1,h�1

� Et (Pt,t+1

Bt+1,h�1

)
Bt+1,h�1

,

where Bt,h is the price of $1. Their conditional Sharpe Ratio is

SR

F,Y
t,h =

Et

⇣
1 + RF,Y

t+1,h

⌘
� 1

r
vart

⇣
1 + RF,Y

t+1,h

⌘

=
Et

⇣
1 + RF,Y

t+1,h

⌘
� 1

s

Et

✓⇣
1 + RF,Y

t+1,h

⌘
2

◆
�
⇣

Et

⇣
1 + RF,Y

t+1,h

⌘⌘
2

⇡ st

8
<

:
gay,ca2

c �
�
ay,x + fy,h�1

� fb,h�1

�
((1 � g) fv + fb,h�1

) a2

x

�
�
ay,s + yy,h�1

� yb,h�1

�
((1 � g) ˜yv + yb,h�1

) a2

sq
a2

y,ca2

c +
�
ay,x + fy,h�1

� fb,h�1

�
2

a2

x +
�
ay,s + yy,h�1

� yb,h�1

�
2

a2

s + a2

y,da2

d

.
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For the unconditional Sharpe ratio observe that the volatility process

s2

t+1

� s2 = ns

⇣
s2

t � s2

⌘
+ asstWt+1

is a square-root Feller process, which is stationary under the constraint ns < 1 � a2

s
2s2

with
a stationary distribution

s2

t =
a2

s

4 (1 � ns)
x

where
x ⇠ c2

✓
4 (1 � ns) s2

a2

s

◆

The moment generating function is

E
⇣

exp

⇣
as2

t

⌘⌘
= E

✓
exp

✓
a

a2

s

4 (1 � ns)
x
◆◆

= exp

0

B@
•

Â
h=1

kh

⇣
a a2

s
4(1�ns)

⌘h

h!

1

CA ,

where kh = 2

h�1 (h � 1)!
⇣

4(1�ns)s2

a2

s

⌘
. For a a2

s
2(1�ns)

< 1, which is the case in the calibration,
we therefore have

E
⇣

exp

⇣
as2

t

⌘⌘
= exp

0

B@
✓

2 (1 � ns) s2

a2

s

◆ •

Â
h=1

⇣
a a2

s
2(1�ns)

⌘h

h

1

CA

= exp

✓
�
✓

2 (1 � ns) s2

a2

s

◆
log

✓
1 � a

a2

s

2 (1 � ns)

◆◆
.

Note that a a2

s
2(1�ns)

< as2 n 1 and therefore E
�
exp

�
as2

t
��

⇡ exp

�
as2

�
. The uncondi-
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tional Sharpe Ratio is therefore

SR

F,Y
t,h =

E
⇣

1 + RF,Y
t+1,h

⌘
� 1

var

⇣
1 + RF,Y

t+1,h

⌘

=
EEt

⇣
1 + RF,Y

t+1,h

⌘
� 1

s

EEt

✓⇣
1 + RF,Y

t+1,h

⌘
2

◆
�
⇣

EEt

⇣
1 + RF,Y

t+1,h

⌘⌘
2

⇡ �s

8
<

:
gay,ca2

c �
�
ay,x + fy,h�1

� fb,h�1

�
((1 � g) fv + fb,h�1

) a2

x

�
�
ay,s + yy,h�1

� yb,h�1

�
((1 � g) ˜yv + yb,h�1

) a2

sq
a2

y,ca2

c +
�
ay,x + fy,h�1

� fb,h�1

�
2

a2

x +
�
ay,s + yy,h�1

� yb,h�1

�
2

a2

s + a2

y,da2

d

.

C.3.2 Bonds

Bond prices: Let the price at time t for $1 in h periods be Bt,h with Bt,0 = 1. For h � 1,
we have

Bt,h = Et[Pt,t+1

Bt+1,h�1

]

This is the general problem from above with gy,t+1

= 0 for all t and therefore

bt,h = µb,h + fb,hxt + yb,hs2

t ,

with

fb,h = �fc
1 � nh

x
1 � nx

yb,h = � (1 � g)2

1 � bns

b (1 � ˜g)
˜yv + yb,h�1

ns

+
1

2

8
<

:
g2a2

c + ((1 � g) fv + fb,h�1

)2 a2

x

+ ((1 � g) ˜yv + yb,h�1

)2 a2

s

yb,1

=

✓
g � 1

2

◆
a2

c > 0

and yb,h > 0 for all h, and yb,h increasing in h. Further,

µb,h � µb,h�1

= log b � µc + s2 (1 � ns)yb,h�1

,
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and thus the solution, for h � 1 is:

µb,h = h (log b � µc) + s2 (1 � ns)
h�1

Â
i=0

yb,i.

Bond returns and Sharpe ratios: The one-period returns are given by:

RB
t+1,h =

Bt+1,h�1

Bt,h
� 1

and therefore

log

⇣
RB

t+1,h + 1

⌘
= � log b + µc + fcxt + (yb,h�1

ns � yb,h) s2

t

+ yb,h�1

asstWt+1

+ fb,h�1

axstWt+1

.

The term structure of conditional Sharpe ratios

SRt

⇣
RB

t+1,h

⌘
⇡

� log b + µc + fcxt +
⇣

yb,h�1

ns � yb,h +
1

2

(yb,h�1

)2 a2

s +
1

2

(fb,h�1

)2 a2

x

⌘
s2

t
r⇣

(yb,h�1

)2 a2

s + (fb,h�1

)2 a2

x

⌘
s2

t

.

For the unconditional Sharpe ratio, recall that

E
⇣

exp

⇣
as2

t

⌘⌘
⇡ exp

⇣
as2

⌘
.

Further, we have
xt+1

= nxxt + axstWt+1

an AR1 process, stationary under the constraint nx < 1, with distribution

xt ⇠ N (0, Sx) ,

where
Sx =

a2

x
1 � n2

x
s2

,

and

E (exp (axt)) ⇡ exp

✓
1

2

a2Sx

◆
.
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Since xt and st have independent stationary distributions, we obtain:

SR

⇣
RB

t+1,h

⌘
⇡

� log b + µc + 1

2

f2

c Sx +
⇣

yb,h�1

ns � yb,h +
1

2

(yb,h�1

)2 a2

s +
1

2

(fb,h�1

)2 a2

x
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The e�ect of horizon h enters through the term in the numerator
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Risk-free rate: The risk-free rate is given by
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We thus have
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C.3.3 Dividend strips

Let the price at time t for the full dividend Dt+h in h periods be Pt,h with Pt,0 = Dt. Then
for h � 1:

Pt,h
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,

which is the general problem from above with
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,

for all t and therefore
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t ,
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where the sign depends on the parameters of the model. Further,

µp,h � µp,h�1

= log b � µc + µd + s2 (1 � ns)yp,h�1

.

For the dividend strips, the spot one-period returns are given by
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/Dt+1
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Dt
,
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and the future one-period returns are given by

RF,P
t+1,h + 1 =

1 + RP
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1 + RB
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.

The conditional expected future one-period returns are
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and the conditional Sharpe ratio term structure is given by
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where we can replace st by s for the unconditional one.

C.3.4 Variance swaps

Under log-linearization, the log-linear normal returns assumption is consistent with the
lognormal consumption and dividend growth model. Indeed, under log-linearization of
the index returns, we have

rt+1

= Ddt+1

+ k1

1
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+ k1

0

� zt,

where zt = pt � dt, the price dividend ratio, and k1
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1

¯z.
From Et (Pt,t+1
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) = 1, we get
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t
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with
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and k
0

and k
1

are determined by the fixed-point problem ¯z = µpd + ypds2.
Under this approximation, returns on the index follow the evolution

rt,t+1

= µr,t + pcacstWt+1

+ pxaxstWt+1

+ psasstWt+1

+ pdadstWt+1

,

where pc, px, ps, pd are the prices of risk and the h-month zero-coupon variance claim is a
claim to the variance15
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��2 s2
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r s2
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For the spot one-period returns on variance swaps, pr is irrelevant. Let’s price the re-
turns of payo�s s2

t+h with price Pst,h. We show the solution is of the form

Pst,h =
⇣

µs,hs2 + ys,hs2

t

⌘
Bt,h,

with µs,0

= 0, ys,0

= 1 and

ys,h = ys,h�1

⇣
ns + ((1 � g) ˜yv + yb,h�1

) a2

s

⌘

µs,h = (µs,h�1

+ ys,h�1

(1 � ns))

The spot one-period returns, on which we have empirical evidence, are given by

RsS
t+1,h + 1 =

Pst+1,h�1

Pst,h
.

15To validate the lognormal assumption, we simulate the returns Rt+1

= Pt+1

+Dt+1

Pt
, where Pt

Dt
= Â+•

1

Pt,h
Dt

,
for various levels of st, and verify the correlation between s2 (Rt+1

) and s2

t is close to 1.
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We therefore have
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We simulate to obtain the unconditional moments and the sharpe ratios.

D Approximation for b ⇡ 1

As in Appendix C, consider the simplified model with only two levels of risk aversion:
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Also, as in Appendix C, take the evolutions:
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and suppose the three shocks are independent. (We can relax this assumption.)
For b close to 1, we have:
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This is an eigenfunction problem with eigenvalue b� 1� ˜g
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known up to a multiplier. Let’s assume:

˜vt � ct = µv + fvxt + yvs2

t .

Then we have:

• Terms in xt (standard formula with b = 1):
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The stochastic discount factor becomes:
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where
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Observe that in all the analysis the impact and the pricing of the state variable xt is
una�ected by the horizon-dependent model. We can therefore simplify the analysis by
setting xt = 0 for all t. Going forward, take the evolutions:
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where

¯pt = �µ � (1 � g)2

1 � ns

1 � ˜g
yvs2

�
⇣
(1 � g)2 � (1 � r) (1 � g + (g � ˜g) ns)

⌘
1 � ns

1 � ˜g
yv

⇣
s2

t � s2

⌘
.

Let the period-t price for the endowment consumption in h periods be Pt,h. For h = 0,
we have Pt,0 = Ct. For h � 1 we have:
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The one-period excess returns on the dividend strips are given by:
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Figure 5: Calibrated term structure of risk-free bond returns under horizon-dependent risk
aversion (HDRA). The Epstein-Zin curve (EZ) is done with the calibration of Bansal et al. (2014).
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We therefore have:
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E Additional figures

Figures 5–7 present the term structures of Figures 2–4 for various other combinations of
immediate risk aversion g and delayed risk aversion ˜g.
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Figure 6: Calibrated term structure of Sharpe ratios under horizon-dependent risk aversion
(HDRA). The Epstein-Zin curve (EZ) is done with the calibration ofBansal et al. (2014).
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Figure 7: Calibrated term structure of variance swaps returns Sharpe ratios under horizon-
dependent risk aversion (HDRA). The Epstein-Zin curve (EZ) is done with the calibration of
Bansal et al. (2014).
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