Private and Social Cost of ADHD: Appendix

A More Technical Explanation to Propensity Score Matching

The aim of this appendix is to describe the principle of propensity score matching in
more technical terms and to establish the link to the linear regression used explanatory
in Chapter 2 of Daley et al. (2014).

Matching is a covariate-specific treatment-control comparison, weighted together to pro-
vide the average treatment effect!. In theory no distributional assumptions is needed and
given the Strongly Ignorable Treatment Assignment the estimate has a causal interpreta-
tion.

Framework

We use Rubin’s potential-outcome framework?: Outcome for an individual with and with-
out ADHD.

Let D; € [0,1] be an indicator of whether individual j has ADHD or not, and let y;
denote the outcome of interest if the individual has ADHD, whereas y? is the outcome of
interest if the individual does not have ADHD. The impact of having ADHD on outcome
y for individual j is then defined as yjl- — y?. The fundamental evaluation problem is that
the same individual with both outcomes is not observed. The observed outcome is given
by

IT it D=0

Daley et al. (2014) focuses on constructing means and establishing the expected causal
change in y for individuals with ADHD (which in the literature is called ”the average
effect of treatment on the treated”, darr);

Sarr=Ely' =y | D=1=E[y' |D=1-E[}° | D=1]

where E[. | D = 1] denotes the expected value of a variable given that the individual
has ADHD. The challenge is to find the counterfactual, i.e., E[y® | D = 1], which is
unobserved. The relevant question is; ”What is the potential outcome of an individual
with ADHD if that same individual did not have ADHD”? This fundamental problem is
solved under the Strongly Ignorable Treatment Assignment assumption by an estimation
technique called matching.

Ignorability of treatment

A simple comparison of observed outcome from an individual with ADHD and from an
individual without ADHD, A = E(y' | D=1)—E(y° | D = 0), is likely contaminated by
the effects of other variables that are correlated with ADHD and the potential outcome
- this is similar to the discussion of omitted variable bias but in the treatment literature

'In this study: The average treatment effect of the treated
2Rubin (1974)
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referred to as selection bias;

A = EBly'|D=1]-E[y"| D=0
= Ely' | D=1-E}°|D=1+E[}|D=1-E[}| D=0
= darr + A

The simple sample mean equals the average treatment effect (of the treated) plus the se-
lection bias, A= E[y° | D =1]— E[y* | D = 0].

If the development of ADHD is random the selection bias is not a problem. But genetics
and the environment is known to influence the probability of having ADHD. It is likely
that individuals with ADHD would have less educational achievement even in the ab-
sent of their ADHD condition because their parents are less educated (possible due to an
ADHD condition of the parents). To estimate the effect of ADHD is an econometric chal-
lenge because the triggers of ADHD are unobserved (and partly unknown) - the solution
is to find a good proxy.

The estimation method requires that (y°,y') are independent of ADHD, conditional on
available information. This is referred to as ignorability of treatment (Rosenbaum and
Rubin (1983)) or selection on observables.

Let X be a vector of pre-treatment variables then the ignorability of treatment is stated

like,
(. y'} LD|X (1)

It is important that the distribution of the pretreatment variables is not influenced by the
ADHD condition?.

The assumption in (1) is a bit too strong. Mean independence is enough (for most of the
results) and given that this study is interested in the treatment effect on the treated the
assumption boils down to:

Ey’ | X, D]=E}}° | X,D=01=E}})° | X,D=1]=E[}}° | X]

Given this assumption, conditional-on-X comparison of average outcome across ADHD
and non-ADHD has a causal interpretation?,

Sarr = Ely' — | D=1) = E[Bly' | X,D=1]— El° | X,D=1]| D=1]
~ [IEW 1X,D= 1~ B’ | X.D = 0)4F(X | D =1)

= /AxdF(X|D:1), Ax=E[y' | X,D=1]—-E[)’ | X,D = 0]

In words, daprr is obtainable as a weighted average of contrasts between ADHD and
matched non-ADHD outcome at each value of X. The weights are given by the density
of X among individuals with ADHD.

A simple matching estimator will replace dx by the sample difference and combine using
the empirical distribution of covariates among individuals with ADHD.

3This will be explained later
4(*) is by the law of iterated expectations
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Exogeneity and omitted variable bias

The following section explores the link between selection bias and the standard exogeneity
assumption. This is also an introduction to the link between OLS and the matching tech-
niques.

First assume that the treatment effect is constant: A, = darp = dars” =yj —y) ¥ .
Observed outcome is given by

vi = v+ Dy, — )
which implies by the ignorability of treatment,
Ely; | X;,D;] = Ely) | X;, D]+ E[D;(y; —v3) | X;, Dy)
= Ely; | Xj] + darrD;
When the treatment effect is constant, Ey; | X;, D;] is additive in D; (with the constant

treatment effect as the coefficient) and a function of Xj.
Observed outcome is given by®

yi = EBly; | X;,Djl+¢;, Elej | X;, D5 =0
= E[y} | X;] 4+ 6arrD; + &5, Elej | X;,D;] =0
This is the standard exogeneuity assumption and standard regression methods can be
used to estimate darp. So far nothing is assumed about the structure of E[y) | X;] and

nonlinear regression methods can be used if 3° is assumed to be nonlinear in the param-
eters and otherwise a flexible functional form could be used.

Suppose, now, that the control-outcome is linear in Xj:

0o_ 0 0 _
Y —a—I—X]’ﬂ—i-sj, Ele5 | X;] =0

J

Then the residual in the linear model
Y; IO(—FXJ/-ﬁ—i-(SRDj—i‘z?j

is uncorrelated with X; and D; and dg is the causal effect”.

A standard regression framework assumes a constant effect but this is not the case for
the matching estimator. The last part of this section introduces the regression framework
without the assumption of a constant treatment effect.

For the intuition it is useful to notice the difference between d4rr and d4pp. First de-
compose Yo and y; into their mean and a stochastic part with zero mean; yo = po + 1o,
where g = E[yo] and y; = g + 11, where uy = E[y;]. Then

Y1 — Yo = (1 — po) + (m — no)

5The average treatment effect
6(*) is by construction (the CEF Decomposition Property)
"The constant treatment effect: A, = dp = dapr = SaTE
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Taking the conditional-on-X expectation gives

Elyn =y | D=1 = (1 —po) +E(m—n|D=1)
darr = Odare+E(m —m| D =1)
The average treatment effect of the treated equals the average treatment effect and the

expected individual-specific gains of those who are treated.
Also note that by taking the conditional-on-X-and-D-expectation®

Ay = 6arp(®) = 0arr(z) = (1 — po) + Elm —no | X = 2] = 6are + Elm —no | X = 2]

the average treatment effect at X equals the average treatment effect and the expected
indiwvidual-specific gain at .

Lets return to the conditional mean,
Ely; | X;,D;1 = EW} | X5, D;] + E[Dj(y; —v}) | X;, Dy
= Ely; | X;]+ Ely; —y; | Xj] x D;

Now, Ely; — ) | X;] is not constant but a function of X and therefore the average
treatment effect (on the treated) will be affected by the distribution of X and in general

5ATT # 5ATE .

Ely; | X;,D;] = Ely;) | X;]+ Ely; —v) | X;] x D;
= B | X;]+ 0areD; + Elm —no | X;] x D,

Ely; | X;, Dj] is additive in D; (with da7g as the coefficient), a function of X, and an
interaction term between D; and a function of X; that captures the difference between
the expected individual-specific effect of those with ADHD and those without ADHD.
Observed outcome using the conditional decomposition is given by

yi = Ely; | Xj,Dj]+¢;, Elej | X5, D51 =0
= E[) | X;]+ 6areD;+ Elm —no | X] x D;, e; L D; | X;
This shows how to correct the simple linear framework by an interaction term that cap-
tures the differences in individual-specific gains by groups.
With this link in mind the simple framework in Chapter 2 in Daley et al. (2014) is used

for explanatory reasons - but it should be stressed that the matching analysis do not suffer
from this simplification.

The link to the standard exogeneity assumption also demonstrates that the study should
be concerned by the standard problems of endogeneity:

e Omitted variable bias: Unobserved heterogeneity and selection bias

e Measurement error

e Simultaneity or reversed causality

8(*) is by ignorability of treatment
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In the study the biggest concern is omitted variable bias. In a standard regression formu-
lation the omitted variable bias formula tells that by omitting an important variable, say
an unobserved variable U, the coefficient will be biased:

6biased = 6R + WU

That is by omitting U the coefficient will pick up the causal effect plus the omitted
bias.This is analogous to the selection bias derived earlier:

5biased:5ATT+E[y0 ’ D= 1] _E[yo | D:O]

By omitting U the estimate will pick up the causal effect and the selection bias.

Given the enormous amount of data available from Statistics Denmark it is possible to
control for many characteristics which makes the assumption of ignorability of treatment
more plausible. But unobservables are still a concern and as a robustness check the study
uses siblings as a matched control group to handle unobserved heterogeneity.

Common support

Both treated and non-treated individuals are needed for an appropriate match:
O<Pr(D=1|X)<1 (2)

Given that the study is interested in 0477 it is enough that individuals-without-ADHD-
matches can be found:

Pr(D=1]|X)<1

For every x € X there should be a positive probability to find a non-ADHD match. If
Pr(D =1|X) =1 the match is not defined and if Pr(D =1 | X) = 0 then zero weight
is given when calculating the average treatment effect.

If the common support assumption is not satisfied for some values of X this limits the
estimate to an average treatment effect for the subgroup of individual with ADHD where

Pr(D=1|X)<1.

Again the amount of data available in this study is a huge advantage - the search for a
non-ADHD match is from the entire adult Danish population and therefore relative good
matches are guaranteed.

Together assumption (1) and (2) are called Strongly Ignorable Treatment Assignment.

Identification and causality

First this section investigates the bias, A — d4pr, of an estimator that adjust for X when
Strongly Ignorable Treatment Assignment is not fulfilled. The net treatment effect at x is
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introduced as?,
P(z)=Ey' | X =2)- By’ | X =)

and its expectation over X; 'y = E{I'(X)}.
It is helpful to split the bias into two components:

Obias = AX — darr = (AX - fx) + (fx — darT)

(Ax — I'x) represent the degree to which ADHD alters the population regression due to
the non-randomness, in the sense that the population regression is not representative for
the ADHD and non-ADHD subpopulation. (f‘ x — Oarr) represent the consequences of
inappropriate averaging of a conditional expectation to obtain a marginal expectation -
as long as X only contains pre-treatment variables this second component will be zero
because the variables cannot be affected by the treatment!©.

If treatment assignment is strongly ignorable for y; and gy, given the (pretreatment) vari-
ables in X, then appropriate adjustment for X is sufficient to directly estimate the average
treatment effect (on the treated), i.e. (Ax — I'x) will be zero.

In theory all that is needed for identification and causality is strongly ignorable treatment
assignment. But we still have to be careful. X should be pretreatment variables and
the propensity score method well specified. The following two section will explore that
further.

Pre- vs- post-treatment control (reversed causality)

This section will explain the importance of conditioning on pretreatment variables. This
is not directly contained in the Strongly Ignorable Treatment Assignment assumption and
therefore it presents a bias on its own.

If a quantity is believed to be unaffected by treatment it can be used without concerns
- but even if a quantity is affected by treatment there could still be reasons to believe
that this is minor compared to the effect treatment has on outcome. If pretreatment
measures of an important quantity is unavailable it is possible more valuable to use a
post-treatment control than doing nothing. But in general an estimate that adjust for a
confounding variable that has been affected by ADHD is biased.

In the following it is explained what kind of bias the affected variable creates.
First introduce (S*, S°) as observable values of a post-treatment confounded variable, and
the (X, S)-adjusted treatment difference,

Alz,s)=EWy' | D=1,S1=5X=1)-E@W°|D=0,S =5X =)
and the average (X, S)-adjusted difference, Ax g = E{A(X, S)}.

To evaluate the bias we reintroduce the net treatment difference:

D(z,s) =By |Si=5,X=2)—EY"|S=sX=21)

9Rosenbaum (1984). This is not a treatment effect - it is a constructed ”optimal” effect without any
side effect - for example if ADHD influences family situation the net treatment effect do not include this
effect even though it essentially is part of the effect of ADHD

10See section pre- vs. post-variables



Private and Social Cost of ADHD: Appendix

and the average net treatment effect T'x s = E{I'(X,S)}. Now, lets return to the two-
component-bias-formula,

Opias = Ax.s — oarr = (Axs —Txs) + (Tx.s — darr)

If S; = Sp (no effect of treatment on S) then fx,s = daar, but we still need Strongly
Ignorable Treatment Assignment!! to have Axs = fX’S.

In general, however, A x,s does not equal the average treatment effect, d4pp, nor the
X-adjusted treatment difference, Ax. Only if treatment assignment is strongly ignorable
for (y',4°) given X then the X-adjusted differences equals the average treatment effect
- adjustment for X alone is sufficient to remove bias, but the (X, S)-adjusted difference
need not equal d447, i.e. adjustment for (X, S) can introduce a bias that could have been
avoided by simply applying the X-adjusted differences. Adjustment for (X, S) instead of
adjustment for X alone are justified only when they are unnecessary. Therefore this do not
give us a rationale for using post-treatment variables (except for possible efficiency gains).

In some cases the post-treatment variable removes a bias. If U is an unobserved con-
founding (pretreatment) variable that fulfills the Strongly Ignorable Treatment Assign-
ment:

(y', S4,y°,8%) L D | (X,U)
0< Pr(D=1|X=z,U=u) <1 V(zx,u)e(X,U)

and it is possible to observe U then (X, U)-adjustment is enough to estimate the effect of
treatment on (y',4°) and (S*,S%). But U is unobservable.

The explanation needs one more definition. (S*, S%) is defined as a surrogate (Rosenbaum
1984) for U if

y' L (ST, X), t=0,1

For each subpopulation (individuals with ADHD, individuals without ADHD), the out-
come and the posttreatment variable are unrelated given the pretreatment variables.

If (S*,5°) is a surrogate for U, then (Axs — I'xg) is zero. More formally if treatment
assignment is strongly ignorable for (y*, S, y° S°) given both X and U, and if (S!, S%)
is a surrogate for U, then (Ays = I'xg). If in addition (S',S°) is unaffected by the
treatment then A X.8 = 0ATT-

A x,s equal the average treatment effect if three conditions are simultaneous fulfilled:
e Treatment assignment is strongly ignorable for (y', S',4°, S%) given X and U
e (S',8Y) is a surrogate for U
e (51,89 is unaffected by the treatment

The problem is that (S!,S%) is often affected by treatment and the simplest approach
would be to avoid all adjustment for post-treatment variables when treatment assignment
is strongly ignorable given X. However, when treatment assignment is not strongly ig-
norable given X, this approach can be unsatisfactory, especially when (S*, S°) is thought

HUA = §447 as showed in previous section
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to be closely related to an unmeasured pretreatment variable that is relevant to both
the condition of ADHD and outcome variables. In such cases, the X-adjusted treatment
difference is possible worse as an approximation to d4p7 than the (X, S)-adjusted differ-
ence. Adjustment for a post-treatment confounding variable is often used in absent of an
unobserved pretreatment variable.

In Daley et al. (2014) many background variables are used to control for initial differences
between individuals with ADHD and individuals without ADHD. We believe that to some
extent those variables can substitute for the ”direct initial measures” that determine the
development of ADHD. For example we expect that family situation is a valuable con-
trol variable - the groups differ considerable with respect to this variable. This could
either reflect effects of ADHD or inherent unobserved pretreatment differences between
the groups, or a combination of the two. We believe in the value of using family situa-
tion as a control variable and with our cost-objective in mind we prefer a conservative
estimate.

Propensity score matching

The aim of Daley et. al. (2014) is to estimate the cost of the causal effect of ADHD. In
doing so we use propensity score matching techniques where individuals are matched on
a number of background variables. This leads to a dimensionality problem, and therefore
we prefer to use a propensity score method (Rosenbaum and Rubin (1983)) to summarize
the vector of characteristics, X, into a single-index variable, the propensity score, p(X) =
Pr(D = 1| X). The propensity score essentially measures the probability that the
individual has ADHD, given his or her initial conditions. Rosenbaum and Rubin (1983)

shows that:
If (y',9°) L D | X then

(¥ 4°) L D|p(X)

This reduces the multidimensional problem into a univariate problem but requires that
the propensity score can be estimated. In this study we estimate the propensity score
using probit models. In this way, it should be noted that, we still rely on some functional
form assumption even though this is not strictly required in matching in general.

In practice it is difficult to find an individual with exact same propensity score. Hence,
we choose the nearest-neighbor algorithm. That is, we compare every individual with
ADHD with the individual without ADHD that has the propensity score closest to the
propensity score of the individual with ADHD.

Many of our individuals with ADHD has an exact match based on the propensity score -
but for some we find a non-exact (but very close) match.

This introduce a functional form assumption that potentially creates some kind of extrap-
olation bias. As a robustness check we use exact-matching on some of the variables that
is expected to have particular influences on the outcome variables.
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Matching vs. OLS

This section will highlight the differences between matching and OLS or perhaps, more
accurate, highlight the similarities between the two. Both methods are control strategies
and mainly differs in their respective weighting scheme. In our view the main advantage
of matching is the explanatory focus on causality and common support.

First, lets investigate the differences in weighting schemes:

e Matching uses the distribution of covariates among the treated to weight covariate-
specific estimates into an estimate of the effect of treatment on the treated:

darr = E[yl—yo|D:1]

= E[Ely' -y’ | X,D=1]| D =1]

= E[EY' | X,D=1]-E[}°|X,D=1]| D =1]
= EEly' | X,D=1]-E[}°| X,D=0]| D=1]
AxdF(X|D:1)

— E[Ay|D=1]

I
—

In the discrete case the matching estimate can be written as:

6ATT = ZAIP(XJ:ZL’ | DJ:]_>

The weights are proportional to the probability of treatment at each value of the
covariates.

e OLS produces a conditional-variance-weighted'? average of these effects

Cou(Y, D) D)
V(D)
ElD - EID | X])Yi]

E[(D - EID | X])?]
E[(D-ED|X))E]Y | D, X]]
E[(D - E[D | X])?]

E[(D — E[D | X])*A,]
E[(D - E[D | X])?]

EE(D — E[D | X])* | X]A.]
EIE[(D - E[D | X])* | X]

OR

which in the discrete case can be written as:

Y. AP(D;=1|X;=x)1-P(D; | X; =21))|P(X; =)
> P(D;j=1]X;=2)1-P(D; | X; =2))]P(X; =)

OR

12The OLS-estimate is the maximum-likelihood estimator
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The treatment-on-the-treated estimate puts the most weight on covariate cells containing
those who are most likely to be treated. In contrast, OLS puts the most weight on co-
variate cells where the conditional variance of treatment status is largest. This is of little
importance if A, does not vary across cells.

With saturated controls both the OLS and matching estimands impose common sup-
port. In practice, however, both OLS and matching estimators are implemented using
modeling assumptions that involve extrapolation across cells. Matching often combine
covariate cells with fewer observation and OLS is typical not a saturated model (conti-
nous covariates in any finite sample requires functional form restrictions). The fact that
both stratification and functional form approximation can be made increasingly accurate
as the sample size grows suggests that also these aspects are similar.

Matching estimators are often used in the literature to evaluate treatment effects. How-
ever, the above indicates that this is more or less the same as OLS - we continue the
matching-tradition because of the pedagogical focus on causality and common support.

Summary

The following table is included to sum up this appendix and provide an overview when
reading Chapter 2 in Daley et al. (2014)

Challenges in causality

Challenge

1 Violation of Strongly Ignorable Treatment Assignment

(i) Violation of Ignorablity of treatment Selection bias

(ii) Violation of Common support Restriction of treatment group
2 Using posttreatment variables Reversed causality
3 Using propensity score

(i) Violation of structural assumption Small sample bias

(ii) Non-exact matches Extrapolation

10



